SUMOylation of RIG-I positively regulates the type I interferon signaling

Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Protein & Cell (Impact Factor: 2.85). 03/2010; 1(3):275-83. DOI: 10.1007/s13238-010-0030-1
Source: PubMed

ABSTRACT Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5'-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system utilizes pattern-recognition receptors (PRRs) to detect the invasion of pathogens and initiate host antimicrobial responses such as the production of type I interferons and proinflammatory cytokines. Nucleic acids, which are essential genetic information carriers for all living organisms including viral, bacterial, and eukaryotic pathogens, are major structures detected by the innate immune system. However, inappropriate detection of self nucleic acids can result in autoimmune diseases. PRRs that recognize nucleic acids in cells include several endosomal members of the Toll-like receptor family and several cytosolic sensors for DNA and RNA. Here, we review the recent advances in understanding the mechanism of nucleic acid sensing and signaling in the cytosol of mammalian cells as well as the emerging role of cytosolic nucleic acids in autoimmunity.
    Annual Review of Immunology 03/2014; 32:461-88. DOI:10.1146/annurev-immunol-032713-120156 · 41.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Host pattern-recognition receptors (PRRs) recognize pathogen-associated molecular patterns generated by invading viruses and initiate a series of signaling cascades that lead to the activation of interferon-regulatory factor 3 (IRF3) and nuclear factor-κB (NF-κB) and subsequent induction of type I interferons (IFNs). Posttranslational modification of proteins by ubiquitin plays an essential role in mediating or regulating the virus-triggered PRRs-mediated signaling. Deubiquitination is the reversible process of ubiquitination and its role in regulating PRRs-mediated signaling has recently been explored. In this review, we first summarize the ubiquitination events in PRRs-mediated signaling that is triggered by viral nucleic acid and then focus on host and viral deubiquitinating enzymes-mediated regulation of virus-triggered signaling that modulates the activation of IRF3 and NF-κB and subsequent induction of type I IFNs. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
    Acta Biochimica et Biophysica Sinica 02/2015; DOI:10.1093/abbs/gmu133 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.
    AIDS (London, England) 07/2013; 27(12):1879-1885. DOI:10.1097/QAD.0b013e328361cfbf · 6.56 Impact Factor


Available from
Jun 1, 2014