The Role of Stem Cells in Cutaneous Wound Healing: What Do We Really Know?

Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Plastic and Reconstructive Surgery (Impact Factor: 3.33). 01/2011; 127 Suppl 1(1):10S-20S. DOI: 10.1097/PRS.0b013e3181fbe2d8
Source: PubMed

ABSTRACT Wound repair is a complex process involving the orchestrated interaction of multiple growth factors, cytokines, chemokines, and cell types. Dysregulation of this process leads to problems such as excessive healing in the form of keloids and hypertrophic scars and chronic, nonhealing wounds. These issues have broad global implications. Stem cells offer enormous potential for enhancing tissue repair and regeneration following injury. The rapidly developing fields of stem cell biology and skin tissue engineering create translational opportunities for the development of novel stem cell-based wound-healing therapies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds.
    10/2014; 3(10):614-625. DOI:10.1089/wound.2013.0497
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of gene- and cell-based therapies to promote angiogenesis is a novel concept to treat lower-limb critical limb ischemia (CLI) and may provide an unmet need for patients with no options for revascularization. Proof of concept was demonstrated in animal models resulting in clinical trials that have confirmed the feasibility and short-term efficacy of intramuscular injection of angiogenetic tissue growth factors or bone marrow stem cells. The safety of these biologic therapies has been demonstrated in randomized clinical trials with no "off-target" angiogenesis, growth of occult tumors, or progression of diabetic retinopathy. Current phase III randomized clinical trials using a DNA plasmid with the hepatocyte growth factor gene or bone marrow aspirate concentrate of mesenchymal cells are designed to address several crucial issues, including proper patient selection criteria, relevant clinical endpoints, and long-term efficacy. Because effectiveness of these novel therapies remains to be established, ongoing and future randomized clinical trials should be placebo-controlled, investigator-blinded, and have amputation-free survival as the primary endpoint. Further development of efficient gene transfer techniques and keeping transplanted stem cells healthy have the potential to make biologic therapies more robust in promoting angiogenesis, tissue regeneration, and resolution of CLI symptoms. If sustained efficacy can be demonstrated, new therapeutic strategies for patients with CLI will be available for clinicians, ie, limb revascularization using angiogenic gene or stem cell therapy alone, or in conjunction with endovascular intervention. Copyright © 2014 Elsevier Inc. All rights reserved.
    Seminars in Vascular Surgery 10/2014; 27(1). DOI:10.1053/j.semvascsurg.2014.10.001 · 1.58 Impact Factor
  • 10/2014; 5(4):537-9. DOI:10.4103/2229-5178.142563