Article

Reviewing once more the c-myc and Ras collaboration Converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology

Department of Stem Cell and Regenerative Medicine, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.24). 01/2011; 10(1):57-67. DOI: 10.4161/cc.10.1.14449
Source: PubMed

ABSTRACT The c-myc is a proto-oncogene that manifests aberrant expression at high frequencies in most types of human cancer. C-myc gene amplifications are often observed in various cancers as well. Ample studies have also proved that c-myc has a potent oncogenicity, which can be further enhanced by collaborations with other oncogenes such as Bcl-2 and activated Ras. Studies on the collaborations of c-myc with Ras or other genes in oncogenicity have established several basic concepts and have disclosed their underlying mechanisms of tumor biology, including "immortalization" and "transformation". In many cases, these collaborations may converge at the cyclin D1-CDK4 complex. In the meantime, however, many results from studies on the c-myc, Ras and cyclin D1-CDK4 also challenge these basic concepts of tumor biology and suggest to us that the immortalized status of cells should be emphasized. Stricter criteria and definitions for a malignantly transformed status and a benign status of cells in culture also need to be established to facilitate our study of the mechanisms for tumor formation and to better link up in vitro data with animal results and eventually with human cancer pathology.

0 Bookmarks
 · 
252 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development. For over three centuries, i.e. since 1665 when the word "necrosis" first emerged, most pathologists and biologists had been familiar with only this single form of cell death, although a few compeers had noticed and described some quite different morphologic traits of dead cells, observations which are now considered to be the first descriptions of programmed cell death [1]. However, ever since 1972 when Kerr et al created the word "apoptosis" to describe some distinctive morphologic traits of cell death in tumor tissues [2], the number of concepts on cell death, each associated with a some sort of mechanism, has been increasing rapidly in the literature [1]. The following are some of these nomenclatures:, and autophagic cell death [3-6]. Many of these nomenclatures may have overlap in the demise mechanisms they describe, but probably very few cell death experts can tell all the details of these, and other unmentioned, cellular death modes. In this essay, we describe our musings on cell death in animals and on its relevance to cancer therapy, which is a continuation of previous descriptions of cellular death [1,7].
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal proliferation of vascular smooth muscle cells (VSMCs) results in intimal thickening of the aorta, which may lead to arteriosclerosis. Therefore, VSMC antiproliferative agents may be efficient in the prevention and treatment of arteriosclerosis. Puerariae radix (PR) is the dried root of Pueraria lobata Ohwi or Pueraria thomsonii Benth. Flavones are the main components of PR and have been shown to have a protective effect on vascular disorders in traditional Chinese medicine treatments. However, the underlying molecular mechanism remains unclear. The aim of the present study was to explore the effect of PR flavone (PRF) on platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation. PDGF-BB (25 ng/ml) and different doses of PRF (10, 50, 100 and 200 ng/ml) were used to treat VSMCs. The results revealed that PRF notably inhibited the PDGF-BB-induced VSMC proliferation and induced a cell cycle arrest at growth 1 phase of the cell cycle. In addition, cell cycle-associated proteins, including cyclin D1, proliferating cell nuclear antigen and cyclin-dependent kinase 4, were found to be downregulated. Furthermore, PRF inhibited the PDGF-BB-stimulated downregulation of VSMC markers, including α-smooth muscle actin, desmin and smoothelin. PDGF-BB upregulated the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK), which are associated with cell proliferation; however, these were decreased following PRF treatment. These observations indicated that PRF had a suppressive effect on PDGF-BB-induced VSMC proliferation by inhibiting PI3K and ERK pathways.
    Experimental and therapeutic medicine 01/2015; 9(1):257-261. DOI:10.3892/etm.2014.2074 · 0.94 Impact Factor

Full-text (2 Sources)

Download
25 Downloads
Available from
Jun 5, 2014