Shiga toxin subtypes display dramatic differences in potency.

Molecular Genetics, Biochemistry, and Microbiology, Room 3109, 231 Albert Sabin Way, ML 524, University of Cincinnati, Cincinnati, OH 45267-0524, USA.
Infection and immunity (Impact Factor: 4.16). 03/2011; 79(3):1329-37. DOI: 10.1128/IAI.01182-10
Source: PubMed

ABSTRACT Purified Shiga toxin (Stx) alone is capable of producing systemic complications, including hemolytic-uremic syndrome (HUS), in animal models of disease. Stx includes two major antigenic forms (Stx1 and Stx2), with minor variants of Stx2 (Stx2a to -h). Stx2a is more potent than Stx1. Epidemiologic studies suggest that Stx2 subtypes also differ in potency, but these differences have not been well documented for purified toxin. The relative potencies of five purified Stx2 subtypes, Stx2a, Stx2b, Stx2c, Stx2d, and activated (elastase-cleaved) Stx2d, were studied in vitro by examining protein synthesis inhibition using Vero monkey kidney cells and inhibition of metabolic activity (reduction of resazurin to fluorescent resorufin) using primary human renal proximal tubule epithelial cells (RPTECs). In both RPTECs and Vero cells, Stx2a, Stx2d, and elastase-cleaved Stx2d were at least 25 times more potent than Stx2b and Stx2c. In vivo potency in mice was also assessed. Stx2b and Stx2c had potencies similar to that of Stx1, while Stx2a, Stx2d, and elastase-cleaved Stx2d were 40 to 400 times more potent than Stx1.

  • [Show abstract] [Hide abstract]
    ABSTRACT: While the differential association of E. coli O157 genotypes with animal and human hosts has recently been well documented, little is known about their distribution between countries and how this might affect regional disease rates. Here, we used a 48-plex SNP assay to segregate 148 E. coli O157 from Australia, Argentina and the United States (U.S.) into 11 SNP lineages. We also investigated the relationship between SNP lineages, Shiga toxin gene profiles and total Shiga toxin (Stx) production. E. coli O157 isolates clearly segregated into SNP lineages that were differentially associated with each country. Of the 11 SNP lineages, seven were detected among isolates from a single country, two were detected among isolates from all three countries, and another two were detected only among U.S. and Argentina isolates. A number of Australian (30%) and Argentinean (14%) isolates were associated with novel, previously undescribed, SNP lineages that were unique to each country. Isolates within SNP lineages that were strongly associated with the carriage of stx2a produced comparatively more Stx on average than those lacking the stx2a subtype. Furthermore, the proportion of isolates in stx2a-associated SNP lineages was significantly higher in Argentina and the U.S. than Australia (P < 0.05). This study provides evidence for the geographic divergence of E. coli O157 and for a prominent role of stx2a in total Stx production. These results also highlight the need for more comprehensive studies into the global distribution of E. coli O157 lineages and the impacts of regionally predominant E. coli O157 lineages on the prevalence and severity of disease. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Journal of Clinical Microbiology 12/2014; 53(2). DOI:10.1128/JCM.01532-14 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shiga toxin (Stx) is one of the most potent bacterial toxins known. Stx is found in Shigella dysenteriae 1 and in some serogroups of Escherichia coli (called Stx1 in E. coli). In addition to or instead of Stx1, some E. coli strains produce a second type of Stx, Stx2, that has the same mode of action as Stx/Stx1 but that is antigenically distinct. Because subtypes of each toxin have been identified, the prototype toxin for each group is now designated Stx1a or Stx2a. The Stxs consist of two major subunits, an A subunit that joins noncovalently to a pentamer of five identical B subunits. The A subunit of the toxin injures the eukaryotic ribosome, and halts protein synthesis in target cells. The function of the B pentamer is to bind to the cellular receptor, globotriaosylceramide, Gb3, found primarily on endothelial cells. The Stxs traffic in a retrograde manner within the cell, such that the A subunit of the toxin reaches the cytosol only after the toxin moves from the endosome to the Golgi and then to the endoplasmic reticulum. In humans infected with Stx-producing E. coli (STEC), the most serious manifestation of the disease, the hemolytic uremic syndrome or HUS, is more often associated with strains that produce Stx2a rather than Stx1a, and that relative toxicity is replicated in mice and baboons. Stx1a and Stx2a also exhibit differences in cytotoxicity to various cell types, bind dissimilarly to receptor analogs or mimics, induce differential chemokine responses, and have several distinctive structural characteristics.
    08/2014; 2(2). DOI:10.1128/microbiolspec.EHEC-0024-2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.


Available from