Article

From sequence to structural analysis in protein phosphorylation motifs

Biocomputing Group, Department of Biochemical Science A Rossi Fanelli, Sapienza University of Rome, P le Aldo Moro 5, Rome, Italy.
Frontiers in Bioscience (Impact Factor: 4.25). 01/2011; 16:1261-75. DOI: 10.2741/3787
Source: PubMed

ABSTRACT Phosphorylation is the most widely studied post-translational modification occurring in cells. While mass spectrometry-based proteomics experiments are uncovering thousands of novel in vivo phosphorylation sites, the identification of kinase specificity rules still remains a relatively slow and often inefficacious task. In the last twenty years, many efforts have being devoted to the experimental and computational identification of sequence and structural motifs encoding kinase-substrate interaction key residues and the phosphorylated amino acid itself. In this review, we retrace the road to the discovery of phosphorylation sequence motifs, examine the progresses achieved in the detection of three-dimensional motifs and discuss their importance in the understanding of regulation and de-regulation of many cellular processes.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphate plays a chemically unique role in shaping cellular signaling of all current living systems, especially eukaryotes. Protein phosphorylation has been studied at several levels, from the near-site context, both in sequence and structure, to the crowded cellular environment, and ultimately to the systems-level perspective. Despite the tremendous advances in mass spectrometry and efforts dedicated to the development of ad hoc highly sophisticated methods, phosphorylation site inference and associated kinase identification are still unresolved problems in kinome biology. The sequence and structure of the substrate near-site context are not sufficient alone to model the in vivo phosphorylation rules, and they should be integrated with orthogonal information in all possible applications. Here we provide an overview of the different contexts that contribute to protein phosphorylation, discussing their potential impact in phosphorylation site annotation and in predicting kinase-substrate specificity.
    Frontiers in Genetics 09/2014; 5:315. DOI:10.3389/fgene.2014.00315
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through its reversibility and fast kinetics. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein's structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation can be used to regulate and modulate protein-protein binding. Losses of phosphorylation sites, as a result of disease mutations, might disrupt protein binding and deregulate signal transduction. In this paper we focus on the effects of phosphorylation on protein stability, dynamics, and binding. We describe several physico-chemical mechanisms of protein regulation through phosphorylation and pay particular attention to phosphorylation in protein complexes and phosphorylation in the context of disorder-order and order-disorder transitions. Finally we assess the role of multiple phosphorylation sites in a protein molecule, their possible cooperativity and function.
    Frontiers in Genetics 08/2014; 5:270. DOI:10.3389/fgene.2014.00270
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation of viral proteins plays important roles in enhancing replication and inhibition of normal host-cell functions. Given its importance in biology, a unique opportunity has arisen to identify viral protein phosphorylation sites. However, experimental methods for identifying phosphorylation sites are resource intensive. Hence, there is significant interest in developing computational methods for reliable prediction of viral phosphorylation sites from amino acid sequences. In this study, a new method based on support vector machine is proposed to identify protein phosphorylation sites in viruses. We apply an encoding scheme based on attribute grouping and position weight amino acid composition to extract physicochemical properties and sequence information of viral proteins around phosphorylation sites. By 10-fold cross-validation, the prediction accuracies for phosphoserine, phosphothreonine and phosphotyrosine with window size of 23 are 88.8%, 95.2% and 97.1%, respectively. Furthermore, compared with the existing methods of Musite and MDD-clustered HMMs, the high sensitivity and accuracy of our presented method demonstrate the predictive effectiveness of the identified phosphorylation sites for viral proteins.
    Journal of Molecular Graphics and Modelling 12/2014; 56. DOI:10.1016/j.jmgm.2014.12.005 · 2.02 Impact Factor

Preview

Download
5 Downloads
Available from