Brain MAPS: an automated, accurate and robust brain extraction technique using a template library.

Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
NeuroImage (Impact Factor: 6.13). 12/2010; 55(3):1091-108. DOI: 10.1016/j.neuroimage.2010.12.067
Source: PubMed

ABSTRACT Whole brain extraction is an important pre-processing step in neuroimage analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any suboptimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T(1)-weighted MR baseline images from the Alzheimer's Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p<0.05, all tests), and the 1st to 99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans ( p<0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤0.010% for 1.5T scans and ≤0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p<0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, Brandt, Menzel and Maurer Jr (2004), Klein, Mensh, Ghosh, Tourville and Hirsch (2005), and Heckemann, Hajnal, Aljabar, Rueckert and Hammers (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of "atlases" (training images that have been previously labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically comes at a high computational cost. Recent advancements in computer hardware and image processing software have been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning, probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS, which roughly spans a decade (2003 - June 2014) and entails novel methodological developments and application-specific solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.
    International Journal of Biomedical Imaging 01/2014; 2014:820205. DOI:10.1155/2014/820205
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a skull stripping method to segment the brain from MRI human head scans using multi-seeded region growing technique. The proposed method has two stages. In Stage-1, the brain in the middle slice is segmented, the brains in the remaining slices are segmented in Stage-2. In each stage, the proposed method is required to identify the rough brain mask. The fine brain region in the rough brain mask is segmented using multi-seeded region growing approach. The proposed method uses multiple seed points which are selected automatically based on the intensity profile of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of the brain image. The proposed brain segmentation method using multi-seeded region growing (BSMRG) was validated using 100 volumes of T1, T2 and PD-weighted MR brain images obtained from Internet Brain Segmentation Repository (IBSR), LONI and Whole Brain Atlas (WBA). The best Dice (D) value of 0·971 and Jaccard (J) value of 0·944 were recorded by the proposed BSMRG method on IBSR dataset. For LONI dataset, the best values of D = 0·979 and J = 0·960 were obtained for the sagittal oriented images by the proposed method. The performance consistency of the proposed method was tested on the brain images of all types and orientation and have and produced better and stable results than the existing methods Brain Extraction Tool (BET), Brain Surface Extraction (BSE), Watershed Algorithm (WAT), Hybrid Watershed Algorithm (HWA) and Skull Stripping using Graph Cuts (GCUT).
    Imaging Science Journal The 06/2014; 62(5):273-284. DOI:10.1179/1743131X13Y.0000000068 · 0.32 Impact Factor