The iron-chelating drug triapine causes pronounced mitochondrial thiol redox stress

Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Toxicology Letters (Impact Factor: 3.26). 03/2011; 201(2):130-6. DOI: 10.1016/j.toxlet.2010.12.017
Source: PubMed


Triapine (Tp) is an iron chelator with activity against several types of cancer. Iron-Tp [Fe(III)(Tp)(2)] can be redox-cycled to generate reactive oxygen species that may contribute to its cytotoxicity. However, evidence for this mechanism in cells is limited. The cytosolic and mitochondrial thioredoxins (Trx1 and Trx2, respectively) are essential for cell survival. They are normally maintained in the reduced state, and support the function of many intracellular proteins including the peroxiredoxins (Prxs). Their redox status can indicate oxidant stress in their respective subcellular compartments. Tp treatment of human lung A549 cells caused almost complete oxidation of Trx2 and its dependent peroxiredoxin (Prx3), but there was no effect on Trx1 redox status. Significant inhibition of total TrxR activity did not occur until Tp levels were 4-fold above those needed to cause Trx2 oxidation. While Tp caused a 36-45% decline in reduced glutathione (GSH) levels, GSH accounted for >99% of the total glutathione in the absence and presence of Tp. In vitro studies demonstrated that cysteine reduces Fe(III)(Tp)(2) to Fe(II)(Tp)(2), and cysteine was faster and more efficient than reduced glutathione (GSH) in this regard. Fe(III)(Tp)(2) also mediated the oxidation of purified Trx2 in vitro. Thus, Fe(III)(Tp)(2) itself, and/or various reactive species that may result from its redox cycling, could account for Trx2 and Prx3 oxidation in Tp-treated cells. The striking difference between the effects on Trx2 and Trx1 implies a pronounced thiol redox stress that is largely directed at the mitochondria. These previously unrecognized effects of Tp could contribute to its overall cytotoxicity.

17 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)-Triapine are reduced to the iron(II)-Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)-Triapine complex are formed. Formation of the iron(II)-Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.
    Journal of inorganic biochemistry 07/2011; 105(11):1422-31. DOI:10.1016/j.jinorgbio.2011.07.003 · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reactive aldehyde acrolein is a ubiquitous environmental pollutant and is also generated endogenously. It is a strong electrophile and reacts rapidly with nucleophiles including thiolates. This review focuses on the effects of acrolein on thioredoxin reductase (TrxR) and thioredoxin (Trx), which are major regulators of intracellular protein thiol redox balance. Acrolein causes irreversible effects on TrxR and Trx, which are consistent with the formation of covalent adducts to selenocysteine and cysteine residues that are key to their activity. TrxR and Trx are more sensitive than some other redox-sensitive proteins, and their prolonged inhibition could disrupt a number of redox-sensitive functions in cells. Among these effects are the oxidation of peroxiredoxins and the activation of apoptosis signal regulating kinase (ASK1). ASK1 promotes MAP kinase activation, and p38 activation contributes to apoptosis and a number of other acrolein-induced stress responses. Overall, the disruption of the TrxR/Trx system by acrolein could be significant early and prolonged events that affect many aspects of redox-sensitive signaling and oxidant stress.
    Molecular Nutrition & Food Research 09/2011; 55(9):1361-74. DOI:10.1002/mnfr.201100224 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Critical issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.
    Antioxidants & Redox Signaling 08/2012; 18(8). DOI:10.1089/ars.2012.4880 · 7.41 Impact Factor
Show more