Adiponectin is a potential catabolic mediator in osteoarthritis cartilage

Department of Internal Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea, 463-707.
Arthritis research & therapy (Impact Factor: 4.12). 12/2010; 12(6):R231. DOI: 10.1186/ar3218
Source: PubMed

ABSTRACT Adiponectin has been implicated in the pathogenesis of osteoarthritis (OA). We studied the effects of adiponectin on the OA cartilage homeostasis.
Immunohistochemical analysis was performed to evaluate differential expression of adiponectin receptors (AdipoRs) in nonlesional and lesional areas of OA cartilage. Cartilage and chondrocytes from the knee joints of primary OA patients were cultured in the presence of adiponectin (0~30 μg/ml). The levels of total nitric oxide (NO), matrix metalloproteinase (MMP)-1, -3, and -13, and tissue inhibitor of metalloproteinase (TIMP)-1 were measured in the conditioned media. The levels of inducible NO synthase (iNOS) and MMPs were determined with the quantitative real-time reverse transcription-polymerase chain reaction. The concentrations of collagenase-cleaved type II collagen neoepitope (C1-2C) were determined in the supernatant of adiponectin-stimulated OA cartilage explants. The effects of kinase and NOS inhibitors were evaluated in the adiponectin-stimulated chondrocytes.
The expression levels of both AdipoR1 and AdipoR2 were significantly higher in lesional than in nonlesional areas of OA cartilage. The increased rate of AdipoR1-positive chondrocytes was twice that of AdipoR2-positive chondrocytes when compared between nonlesional and lesional areas. Adiponectin-stimulated OA chondrocytes showed increased total NO and MMP-1, -3, and -13 levels compared with nonstimulated cells. The TIMP-1 level was not affected. The C1-2C levels were increased by adiponectin in OA cartilage explant culture. AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK) inhibitors (compound C and SP600125) significantly suppressed adiponectin-induced production of total NO and MMP-1, -3, and -13. Inducible NOS inhibitors enhanced the expression of the adiponectin-induced MMPs.
Adiponectin causes matrix degradation in OA cartilage and increases MMPs and iNOS expression via the AMPK and JNK pathways in human OA chondrocytes. The catabolic effects of adiponectin may be counteracted by NO.

Download full-text


Available from: Chong Bum Chang, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondrogenesis occurs as a result of mesenchymal cell condensation and chondroprogenitor cell differentiation. Following chondrogenesis, the chondrocytes remain as resting cells to form the articular cartilage or undergo proliferation, terminal differentiation to chondrocyte hypertrophy, and apoptosis in a process termed endochondral ossification, whereby the hypertrophic cartilage is replaced by bone. Human adult articular cartilage is a complex tissue of matrix proteins that varies from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue-engineering strategies is the inability of the resident chondrocytes to lay down a new matrix with the same properties as it had when it was formed during development. Thus, understanding and comparing the mechanisms of cartilage remodeling during development, osteoarthritis (OA), and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. The pivotal proteinase that marks OA progression is matrix metalloproteinase 13 (MMP-13), the major type II collagen-degrading collagenase, which is regulated by both stress and inflammatory signals. We and other investigators have found that there are common mediators of these processes in human OA cartilage. We also observe temporal and spatial expression of these mediators in early through late stages of OA in mouse models and are analyzing the consequences of knockout or transgenic overexpression of critical genes. Since the chondrocytes in adult human cartilage are normally quiescent and maintain the matrix in a low turnover state, understanding how they undergo phenotypic modulation and promote matrix destruction and abnormal repair in OA may to lead to identification of critical targets for therapy to block cartilage damage and promote effective cartilage repair.
    Therapeutic advances in musculoskeletal disease 08/2012; 4(4):269-85. DOI:10.1177/1759720X12448454
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews the concept, status and challenges of emerging nonvolatile memory technologies. The technologies that are discussed and compared to state of the art flash technology are the conductive bridging RAM (CBRAM), the ferro-electric RAM (FeRAM), the magneto-resistive RAM (MRAM), the organic RAM (ORAM) and the phase change RAM (PCRAM).
    Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International; 01/2005
  • Source
    Medicine &amp Science in Sports &amp Exercise 01/2006; 38. DOI:10.1249/00005768-200611001-00101 · 4.46 Impact Factor