Hippocampal Hyperactivation in Presymptomatic Familial Alzheimer's Disease

Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA, USA.
Annals of Neurology (Impact Factor: 11.91). 12/2010; 68(6):865-75. DOI: 10.1002/ana.22105
Source: PubMed

ABSTRACT The examination of individuals who carry fully penetrant genetic alterations that result in familial Alzheimer's disease (FAD) provides a unique model for studying the early presymptomatic disease stages. In AD, deficits in episodic and associative memory have been linked to structural and functional changes within the hippocampal system. This study used functional MRI (fMRI) to examine hippocampal function in a group of healthy, young, cognitively-intact presymptomatic individuals (average age 33.7 years) who carry the E280A presenilin-1 (PS1) genetic mutation for FAD. These PS1 subjects will go on to develop the first symptoms of the disease around the age of 45 years. Our objective was to examine hippocampal function years before the onset of clinical symptoms.
Twenty carriers of the Alzheimer's-associated E280A PS1 mutation and 19 PS1-negative control subjects participated. Both groups were matched for age, sex, education level, and neuropsychological test performance. All participants performed a face-name associative encoding task while in a Phillips 1.5T fMRI scanner. Analysis focused on the hippocampal system.
Despite identical behavioral performance, presymptomatic PS1 mutation carriers exhibited increased activation of the right anterior hippocampus during encoding of novel face-name associations compared to matched controls.
Our results demonstrate that functional changes within the hippocampal memory system occur years before cognitive decline in FAD. These presymptomatic changes in hippocampal physiology in FAD suggest that hippocampal fMRI patterns during associative encoding may also provide a preclinical biomarker in sporadic AD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional compensation demonstrated as mechanism to offset neuronal loss in early Alzheimer disease may also occur in other adult-onset neurodegenerative diseases, particularly Huntington disease (HD) with its genetic determination and gradual changes in structural integrity. In HD, neurodegeneration typically initiates in the dorsal striatum, successively affecting ventral striatal areas. Investigating carriers of the HD mutation with evident dorsal, but only minimal or no ventral striatal atrophy, we expected to find evidence for compensation of ventral striatal functioning. We investigated 14 pre- or early symptomatic carriers of the mutation leading to HD and 18 matched healthy controls. Participants underwent structural T1 magnetic resonance imaging (MRI) and functional MRI during a reward task that probes ventral striatal functioning. Motor functioning and attention were assessed with reaction time (RT) tasks. Structural images confirmed a specific decrease of dorsal striatal but only marginal ventral striatal volume in HD relative to control subjects, paralleling prolonged RT in the motor response tasks. While behavioral performance in the reward task during fMRI scanning was unimpaired, reward-related fMRI signaling in the HD group was differentially enhanced in the bilateral ventral striatum and in bilateral orbitofrontal cortex/anterior insula, as another region sensitive to reward processing. We provide evidence for the concept of functional compensation in premanifest HD which may suggest a defense mechanism in neurodegeneration. Given the so far inevitable course of HD with its genetically determined endpoint, this disease may provide another model to study the different aspects of the concept of functional compensation.
    PLoS ONE 12/2014; 9(12):e114569. DOI:10.1371/journal.pone.0114569 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vGLUT, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal GLT-1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus (DG), CA3, and CA1 regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the DG and CA3, respectively, and significantly decreased glutamate clearance in all 3 regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 10/2014; DOI:10.1111/jnc.12967 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the field begins to test the concept of a “preclinical” stage of neurodegenerative disease, when the pathophysiological process has begun in the brain, but clinical symptoms are not yet manifest, a number of intriguing questions have already arisen. In particular, in preclinical Alzheimer’s disease (AD), the temporal relationship of amyloid markers to markers of neurodegeneration and their relative utility in the prediction of cognitive decline among clinically normal older individuals remains to be fully elucidated. Secondary prevention trials in AD have already begun in both genetic at-risk and amyloid at-risk cohorts, with several more trials in the planning stages, and should provide critical answers about whether intervention at this very early stage of disease can truly bend the curve of clinical progression. This review will highlight recent progress in cognitive, imaging, and biomarker outcomes in the field of preclinical AD, and the remaining gaps in knowledge.
    Neuron 11/2014; 84(3). DOI:10.1016/j.neuron.2014.10.038 · 15.77 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014