Article

Local gene delivery and methods to control immune responses in muscles of normal and dystrophic dogs.

Program in Transplantation Biology, Division of Clinical Research, Fred Hutchinson Cancer Research Center, Fairview Av N, D1-100, Seattle, WA, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 709:265-75. DOI: 10.1007/978-1-61737-982-6_17
Source: PubMed

ABSTRACT Adeno-associated viral vector (AAV)-mediated gene transfer represents a promising gene replacement strategy for treating Duchenne muscular dystrophy (DMD). However, recent studies demonstrated cellular immunity specific to AAV capsid proteins in animal models, which resulted in liver toxicity and elimination of transgene expression in a human trial of hemophilia B. We have recently developed immunosuppressive strategies to prevent such immunity for successful long-term transgene expression in dog muscle. Here, we describe in detail the immunosuppressive regimens employed in both normal and DMD dogs and provide methods for evaluating the efficiency of the regimens following intramuscular injection of AAV in dogs.

0 Bookmarks
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly abbreviated micro-dystrophin genes have been intensively studied for Duchenne muscular dystrophy (DMD) gene therapy. Following adeno-associated virus (AAV) gene transfer, robust microgene expression is achieved in murine DMD models in the absence of immune suppression. Interestingly, a recent study suggests that AAV gene transfer in dystrophic dogs may require up to 18 weeks' immune suppression using a combination of three different immune-suppressive drugs (cyclosporine, mycophenolate mofetil, and anti-dog thymocyte globulin). Continued immune suppression is not only costly but also may cause untoward reactions. Further, some of the drugs (such as anti-dog thymocyte globulin) are not readily available. To overcome these limitations, we developed a novel 5-week immune suppression scheme using only cyclosporine and mycophenolate mofetil. AAV vectors (either AV.RSV.AP that expresses the heat-resistant human alkaline phosphatase gene, or AV.CMV.μDys that expresses the canine R16-17/H3/ΔC microgene) at 2.85×10(12) vg particles were injected into adult dystrophic dog limb muscles under the new immune suppression protocol. Sustained transduction was observed for nearly half year (the end of the study). The simplified immune suppression strategy described here may facilitate preclinical studies in the dog model.
    Human gene therapy 10/2011; 23(2):202-9. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.Gene Therapy advance online publication, 6 February 2014; doi:10.1038/gt.2014.4.
    Gene therapy 02/2014; · 4.75 Impact Factor