Molecular Imaging of RNA Interference Therapy Targeting PHD2 for Treatment of Myocardial Ischemia

Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 709:211-21. DOI: 10.1007/978-1-61737-982-6_13
Source: PubMed


Coronary artery disease is the number one cause of morbidity and mortality in the Western world. It typically occurs when heart muscle receives inadequate blood supply due to rupture of atherosclerotic plaques. During ischemia, up-regulation of hypoxia inducible factor-1 alpha (HIF-1α) transcriptional factor can activate several downstream angiogenic genes. However, HIF-1α is naturally degraded by prolyl hydroxylase-2 (PHD2) protein. Recently, we cloned the mouse PHD2 gene by comparing the homolog gene in human and rat. The best candidate shRNA sequence for inhibiting PHD2 was inserted behind H1 promoter, followed by a separate hypoxia response element (HRE)-incorporated promoter driving a firefly luciferase (Fluc) reporter gene. This construct allowed us to monitor gene expression noninvasively and was used to test the hypothesis that inhibition of PHD2 by short hairpin RNA interference (shRNA) can lead to significant improvement in angiogenesis and contractility as revealed by in vitro and in vivo experiments.

Download full-text


Available from: Joseph C Wu, Feb 02, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factor (HIF) is a set of transcription factors that regulate the cellular response to hypoxia. There is a great body of evidence supporting the protective role of HIF-1α in cardiovascular pathophysiology, however, newer studies are hinting at a maladaptive and deleterious role of this transcription factor that merits further investigation. There is a general agreement, however, that HIF-mediated responses appear to differ under conditions of acute and chronic oxygen deprivation. The intensity and sustainability of HIF-1α activation are major determinants of whether the responses are pathological or beneficial. HIF activation is seen to be beneficial in the setting of acute myocardial ischemia and deleterious in chronic conditions. In this review, we will focus on recent insights into the role of HIF-1α in the heart and especially in the setting of ischemic heart disease.
    Cardiology in review 06/2012; 20(6):268-73. DOI:10.1097/CRD.0b013e31826287f6 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the feasibility of using the adenoviral delivery of DNA for a non-native microRNA to suppress expression of a target protein (cytosolic NADP+-dependent malic-enzyme 1, ME1) in whole heart in vivo, via an isolated-heart coronary perfusion approach. Complementary DNA constructs for ME1 microRNA were inserted into adenoviral vectors. Viral gene transfer to neonatal rat cardiomyocytes yielded 65% suppression of ME1 protein. This viral package was delivered to rat hearts in vivo (Adv.miR_ME1, 1013 vp/ml PBS) via coronary perfusion, using a cardiac-specific isolation technique. ME1 mRNA was reduced by 73% at 2-6 days post-surgery in heart receiving the Adv.miR_ME1. Importantly, ME1 protein was reduced by 66% (p<0.0002) at 5-6 days relative to sham-operated control hearts. Non-target protein expression for GAPDH, calsequestrin, and mitochondrial malic enzyme, ME3, were all unchanged. The non-target isoform, ME2, was unchanged at 2-5 days and reduced at day 6. This new approach demonstrates for the first time significant and acute silencing of target RNA translation and protein content in whole heart, in vivo, via non-native microRNA expression.
    Current Gene Therapy 09/2012; 12(6). DOI:10.2174/156652312803519760 · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding of the roles of noncoding RNAs (ncRNAs) within complex organisms has fundamentally changed. It is increasingly possible to use ncRNAs as diagnostic and therapeutic tools in medicine. Regarding disease pathogenesis, it has become evident that confinement to the analysis of protein-coding regions of the human genome is insufficient because ncRNA variants have been associated with important human diseases. Thus, inclusion of noncoding genomic elements in pathogenetic studies and their consideration as therapeutic targets is warranted. We consider aspects of the evolutionary and discovery history of ncRNAs, as far as they are relevant for the identification and selection of ncRNAs with likely therapeutic potential. Novel therapeutic strategies are based on ncRNAs, and we discuss here RNA interference as a highly versatile tool for gene silencing. RNA interference-mediating RNAs are small, but only parts of a far larger spectrum encompassing ncRNAs up to many kilobasepairs in size. We discuss therapeutic options in cardiovascular medicine offered by ncRNAs and key issues to be solved before clinical translation. Convergence of multiple technical advances is highlighted as a prerequisite for the translational progress achieved in recent years. Regarding safety, we review properties of RNA therapeutics, which may immunologically distinguish them from their endogenous counterparts, all of which underwent sophisticated evolutionary adaptation to specific biological contexts. Although our understanding of the noncoding human genome is only fragmentary to date, it is already feasible to develop RNA interference against a rapidly broadening spectrum of therapeutic targets and to translate this to the clinical setting under certain restrictions.
    Circulation Research 08/2013; 113(5):588-602. DOI:10.1161/CIRCRESAHA.113.301056 · 11.02 Impact Factor