Article

Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington's disease

Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged 6725, Hungary.
Journal of Neural Transmission (Impact Factor: 2.87). 12/2010; 118(6):865-75. DOI: 10.1007/s00702-010-0573-6
Source: PubMed

ABSTRACT Huntington's disease (HD) is a progressive neurodegenerative disorder, the pathomechanism of which is not yet fully understood. Excitotoxicity is known to be involved in the development of HD and antiglutamatergic agents may, therefore, have beneficial neuroprotective effects. One of these agents is the tryptophan metabolite kynurenic acid (KYNA), which is an endogenous NMDA receptor antagonist. However, its pharmacological properties rule out its systemic administration in CNS disorders. We have tested a novel KYNA analogue, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride, in the N171-82Q transgenic mouse model of HD. The analogue exhibited several significant effects: it prolonged the survival of the transgenic mice, ameliorated their hypolocomotion, prevented the loss of weight and completely prevented the atrophy of the striatal neurons. The beneficial effects of this KYNA analogue are probably explained by its complex anti-excitotoxic activity. As it did not induce any appreciable side-effect at the protective dose applied in a chronic dosing regime in this mouse model, it appears worthy of further thorough investigations with a view to eventual clinical trials.

Full-text

Available from: Gabor Nyiri, Jan 08, 2014
2 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract. Three-dimensional tissue cultures have been used as effective models for studying different diseases, including epilepsy. High-throughput, nondestructive techniques are essential for rapid assessment of disease-related processes, such as progressive cell death. An ultrahigh-resolution optical coherence microscopy (UHR-OCM) system with ∼1.5 μm axial resolution and ∼2.3 μm transverse resolution was developed to evaluate seizure-induced neuronal injury in organotypic rat hippocampal cultures. The capability of UHR-OCM to visualize cells in neural tissue was confirmed by comparison of UHR-OCM images with confocal immunostained images of the same cultures. In order to evaluate the progression of neuronal injury, UHR-OCM images were obtained from cultures on 7, 14, 21, and 28 days in vitro (DIVs). In comparison to DIV 7, statistically significant reductions in three-dimensional cell count and culture thickness from UHR-OCM images were observed on subsequent time points. In cultures treated with kynurenic acid, significantly less reduction in cell count and culture thickness was observed compared to the control specimens. These results demonstrate the capability of UHR-OCM to perform rapid, label-free, and nondestructive evaluation of neuronal death in organotypic hippocampal cultures. UHR-OCM, in combination with three-dimensional tissue cultures, can potentially prove to be a promising tool for high-throughput screening of drugs targeting various disorders.
    10/2014; 1(2-2):025002. DOI:10.1117/1.NPh.1.2.025002
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impairment of glutamatergic neurotransmission plays an important role in the development of Alzheimer's disease (AD). The pathological process, which involves the production of amyloid-β peptides and hyperphosphorylated tau proteins, spreads over well-delineated neuroanatomical circuits. The gradual deterioration of proper synaptic functioning (via GluN2A-containing N-methyl-D-aspartate receptors, NMDARs) and the development of excitotoxicity (via GluN2B-containing NMDARs) in these structures both accompany the disease pathogenesis. Although one of the most important therapeutic targets would be glutamate excitotoxicity, the application of conventional anti-glutamatergic agents could result in further deterioration of synaptic transmission and intolerable side-effects. With regard to NMDAR antagonists with tolerable side-effects, ion channel blockers with low affinity, glycine site agents, and specific antagonists of polyamine site and GluN2B subunit may come into play. However, in the mirror of experimental data, only the application of ion channel blockers with pronounced voltage dependency, low affinity, and rapid unblocking kinetics (e.g., memantine) and specific antagonists of the GluN2B subunit (e.g., ifenprodil and certain kynurenic acid amides) resulted in desirable symptom amelioration. Therefore we propose that these kinds of chemical agents may have therapeutic potential for present and future drug development.
    Journal of Alzheimer's disease: JAD 03/2014; 42. DOI:10.3233/JAD-132621 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Oral levodopa is the current baseline therapy in the management of Parkinson's disease, but nonmotor complications and therapy-related dyskinesias pose an important challenge for clinicians. Glutamate receptors have been implicated in the neurodegenerative process of Parkinson's disease and also in the development of levodopa-induced dyskinesias. This article discusses the role of NMDA receptors in Parkinson's disease and their modulation as a possible therapeutic approach.
    02/2014; 4(1):23-30. DOI:10.2217/nmt.13.77