Article

White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke.

Neurology Research, Henry Ford Hospital, Detroit, MI 48202, USA.
Stroke (Impact Factor: 6.16). 02/2011; 42(2):445-52. DOI: 10.1161/STROKEAHA.110.596486
Source: PubMed

ABSTRACT Diabetes mellitus leads to a higher risk of ischemic stroke and worse outcome compared to the general population. However, there have been few studies on white matter (WM) damage after stroke in diabetes mellitus. We therefore investigated WM damage after stroke in mice with diabetes mellitus.
BKS.Cg-m(+/+)Lepr(db)/J (db/db) type 2 diabetes mellitus mice and db(+) non-diabetes mellitus mice were subjected to middle cerebral artery occlusion. Functional outcome, immunostaining, zymography, Western blot, and polymerase chain reaction were used.
After stroke, mice with diabetes mellitus exhibited significantly increased lesion volume and brain hemorrhagic and neurological deficits compared to mice without diabetes mellitus. Bielshowsky silver, luxol fast blue, amyloid precursor protein, and NG2 expression were significantly decreased, indicating WM damage, and matrix metalloproteinase (MMP)-9 activity was significantly increased in the ischemic brain of mice with diabetes mellitus. Subanalysis of similar lesions in mice with and without diabetes mellitus demonstrated mice with diabetes mellitus had significantly increased WM damage than in mice without diabetes mellitus (P<0.05). To investigate the mechanism underlying diabetes mellitus-induced WM damage, oxygen-glucose deprivation-stressed premature oligodendrocyte and primary cortical neuron cultures were used. High glucose increased MMP-2, MMP-9, cleaved caspase-3 levels, and apoptosis, as well as decreased cell survival and dendrite outgrowth in cultured primary cortical neuron. High glucose increased MMP-9, cleaved caspase-3 level, and apoptosis, and decreased cell proliferation and cell survival in cultured oligodendrocytes. Inhibition of MMP by GM6001 treatment significantly decreased high glucose-induced cell death and apoptosis in cultured primary cortical neuron and oligodendrocytes but did not alter dendrite outgrowth in primary cortical neuron.
Mice with diabetes mellitus have increased brain hemorrhage and show more severely injured WM than mice without diabetes mellitus after stroke. MMP-9 upregulated in mice with diabetes mellitus may exacerbate WM damage after stroke in mice with diabetes mellitus.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and purposeWe investigated the neurorestorative effects and underlying mechanisms of stroke treatment with human umbilical cord blood cells (HUCBCs) in Type one diabetes mellitus (T1DM) rats.Methods Type one diabetes mellitus rats were subjected to middle cerebral artery occlusion (MCAo) and 24 h later were treated with: (1) phosphate-buffered-saline; (2) HUCBCs. Brain endothelial cells (MBECs) were cultured and capillary tube formation was measured.ResultsHuman umbilical cord blood cells treatment significantly improved functional outcome and promoted white matter (WM) remodeling, as identified by Bielschowsky silver, Luxol fast blue and SMI-31 expression, increased oligodendrocyte progenitor cell and oligodendrocyte density after stroke in T1DM rats. HUCBC also promoted vascular remodeling, evident from enhanced vascular and arterial density and increased artery diameter, and decreased blood-brain barrier leakage. HUCBC treatment also increased Angiopoietin-1 and decreased receptor for advanced glycation end-products (RAGE) expression compared to T1DM-MCAo control. In vitro analysis of MBECs demonstrated that Ang1 inversely regulated RAGE expression. HUCBC and Ang1 significantly increased capillary tube formation and decreased inflammatory factor expression, while anti-Ang1 attenuated HUCBC-induced tube formation and antiinflammatory effects.Conclusion Human umbilical cord blood cells is an effective neurorestorative therapy in T1DM-MCAo rats and the enhanced vascular and WM remodeling and associated functional recovery after stroke may be attributed to increasing Angiopoietin-1 and decreasing RAGE.
    CNS Neuroscience & Therapeutics 07/2014; · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke is responsible for many deaths and long-term disability world wide. Development of effective therapy has been the target of intense research. Accumulating preclinical literature has shown that substantial functional improvement after stroke can be achieved using subacutely administered cell-based and pharmacological therapies. This review will discuss some of the latest findings on bone marrow-derived mesenchymal stem cells (BMSCs), human umbilical cord blood cells, and off-label use of some pharmacological agents, to promote recovery processes in the sub-acute and chronic phases following stroke. This review paper also focuses on molecular mechanisms underlying the cell-based and pharmacological restorative processes, which enhance angiogenesis, arteriogenesis, neurogenesis, and white matter remodeling following cerebral ischemia as well as an analysis of the interaction/coupling among these restorative events. In addition, the role of microRNAs mediating the intercellular communication between exogenously administered cells and parenchymal cells, and their effects on the regulation of angiogenesis and neuronal progenitor cell proliferation and differentiation, and brain plasticity after stroke are described.
    Frontiers in Human Neuroscience 01/2014; 8:382. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Listen to the Podcast by Michael BraininAccess module contentFree registration to access module content, answer questions and earn CME creditWatch the video with module author Michael ChoppFurther Reading
    World Stroke Academy. 11/2013; 1(6).

Full-text (2 Sources)

Download
31 Downloads
Available from
May 27, 2014