Metallic Nanodot Arrays by Stencil Lithography for Plasmonic Biosensing Applications

Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
ACS Nano (Impact Factor: 12.88). 02/2011; 5(2):844-53. DOI: 10.1021/nn1019253
Source: PubMed


The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices.

1 Follower
7 Reads
  • Source
    • "We used nanostencil lithography as a method of patterning a nanocatalyst to demonstrate and characterize number- and location-controlled synthesis of CNTs. Nanostencil lithography has been widely used to fabricate various nanopatterns [25-28], nanoparticles [29,30], and nanowires [31], and it is advantageous because it consists of a series of simple fabrication steps and because the stencil mask is reusable. Moreover, the degree of contamination of the catalyst during patterning might be negligible in nanostencil lithography because patterning is conducted under vacuum without need for a photoresist, a solvent, or chemicals used for patterning and etching [32], thereby producing a residue-free catalyst suitable for CVD synthesis of CNTs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Controlled synthesis and integration of carbon nanotubes (CNTs) remain important areas of study to develop practical carbon-based nanodevices. A method of controlling the number of CNTs synthesized depending on the size of the catalyst was characterized using nanostencil lithography, and the critical dimension for the nanoaperture produced on a stencil mask used for growing individual CNTs was studied. The stencil mask was fabricated as a nanoaperture array down to 40 nm in diameter on a low-stress silicon nitride membrane. An iron catalyst used to synthesize CNTs was deposited through submicron patterns in the stencil mask onto a silicon substrate, and the profile of the patterned iron catalyst was analyzed using atomic force microscopy. The feasibility toward a scalable, number-, and location-controlled synthesis of CNTs was experimentally demonstrated based on the diameter and geometry of the apertures in the stencil mask.
    Nanoscale Research Letters 06/2013; 8(1):281. DOI:10.1186/1556-276X-8-281 · 2.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fully epitaxial BaTiO(3)/CoFe(2)O(4) ferroelectric/ferromagnetic multilayered nanodot arrays, a new type of magnetoelectric (ME) nanocomposite with both horizontal and vertical orderings, were fabricated via a stencil-derived direct epitaxy technique. By reducing the clamping effect, ferroelectric domain modification and distinct magnetization change proportional to different interfacial area around the BaTiO(3) phase transition temperatures were found, which may pave the way to quantitative introducing of ME coupling at nanoscale and build high density multistate memory devices.
    Nano Letters 08/2011; 11(8):3202-6. DOI:10.1021/nl201443h · 13.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We experimentally demonstrate a plasmonic Mach-Zehnder interferometer (MZI) integrated with a microfluidic chip for ultrasensitive optical biosensing. The MZI is formed by patterning two parallel nanoslits in a thin metal film, and the sensor monitors the phase difference, induced by surface biomolecular adsorptions, between surface plasmon waves propagating on top and bottom surfaces of the metal film. The combination of a nanoplasmonic architecture and sensitive interferometric techniques in this compact sensing platform yields enhanced refractive index sensitivities greater than 3500 nm/RIU and record high sensing figures of merit exceeding 200 in the visible region, greatly surpassing those of previous plasmonic sensors and still hold potential for further improvement through optimization of the device structure. We demonstrate real-time, label-free, quantitative monitoring of streptavidin-biotin specific binding with high signal-to-noise ratio in this simple, ultrasensitive, and miniaturized plasmonic biosensor.
    ACS Nano 11/2011; 5(12):9836-44. DOI:10.1021/nn2034204 · 12.88 Impact Factor
Show more