Article

In Vivo Imaging of Human and Mouse Skin with a Handheld Dual-Axis Confocal Fluorescence Microscope

James H Clark Center for Biomedical Engineering & Sciences, Department of Pediatrics, Stanford University, Stanford, California 94305, USA.
Journal of Investigative Dermatology (Impact Factor: 6.37). 12/2010; 131(5):1061-6. DOI: 10.1038/jid.2010.401
Source: PubMed

ABSTRACT Advancing molecular therapies for the treatment of skin diseases will require the development of new tools that can reveal spatiotemporal changes in the microanatomy of the skin and associate these changes with the presence of the therapeutic agent. For this purpose, we evaluated a handheld dual-axis confocal (DAC) microscope that is capable of in vivo fluorescence imaging of skin, using both mouse models and human skin. Individual keratinocytes in the epidermis were observed in three-dimensional image stacks after topical administration of near-infrared (NIR) dyes as contrast agents. This suggested that the DAC microscope may have utility in assessing the clinical effects of a small interfering RNA (siRNA)-based therapeutic (TD101) that targets the causative mutation in pachyonychia congenita (PC) patients. The data indicated that (1) formulated indocyanine green (ICG) readily penetrated hyperkeratotic PC skin and normal callused regions compared with nonaffected areas, and (2) TD101-treated PC skin revealed changes in tissue morphology, consistent with reversion to nonaffected skin compared with vehicle-treated skin. In addition, siRNA was conjugated to NIR dye and shown to penetrate through the stratum corneum barrier when topically applied to mouse skin. These results suggest that in vivo confocal microscopy may provide an informative clinical end point to evaluate the efficacy of experimental molecular therapeutics.

1 Follower
 · 
149 Views
  • IEEE Journal of Selected Topics in Quantum Electronics 01/2015; DOI:10.1109/JSTQE.2015.2389530 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the last decade, confocal microscopy has become a valuable non-invasive diagnostic tool in imaging human skin in vivo. Of the two different methods that exist, reflectance confocal microscopy (RCM) displays the backscattering signal of naturally occurring skin components, whereas fluorescence confocal microscopy (FCM) provides contrast by using an exogenously applied fluorescent dye. A newly developed multilaser device, in which both techniques are implemented, has been used to combine both methods and allows to highlight different information in one image. In our study, we applied the fluorophore sodium fluorescein (SFL) intradermally on forearm skin of 10 healthy volunteers followed by fluorescence and reflectance imaging. In fluorescence mode the intercellular distribution of SFL clearly outlines every single cell in the epidermis, whereas in reflectance mode keratin and melanin-rich cells and structures provide additional information. The combination of both methods enables a clear delineation between the cell border, the cytoplasm and the nucleus. Imaging immediately, 20, 40 and 60 minutes after SFL injection, represents the dynamic distribution pattern of the dye. The synergism of RCM and FCM in one device delivering accurate information on skin architecture and pigmentation will have a great impact on in vivo diagnosis of human skin in the future.
    01/2012; 2(1):3-12. DOI:10.5826/dpc.0201a02.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The point-scanned dual-axis confocal (PS-DAC) microscope has been shown to exhibit superior capability to reject out-of-focus and multiply scattered light in comparison to its conventional single-axis counterpart. However, the slow frame rate (typically <5 Hz) resulting from point-by-point data collection makes these systems vulnerable to motion artifacts. While video-rate point-scanned confocal microscopy is possible, a line-scanned dual-axis confocal (LS-DAC) microscope provides a simpler means of achieving high-speed imaging through line-by-line data collection, but sacrifices contrast due to loss of confocality along one dimension. Here we evaluate the performance trade-offs between an LS-DAC and PS-DAC microscope with identical spatial resolutions. Characterization experiments of the LS-DAC and PS-DAC microscopes with tissue phantoms, in reflectance mode, are shown to match results from Monte Carlo scattering simulations of the systems. Fluorescence images of mouse brain vasculature, obtained using resolution-matched LS-DAC and PS-DAC microscopes, demonstrate the comparable performance of LS-DAC and PS-DAC microscopy at shallow depths.
    Optics Letters 12/2013; 38(24):5280-3. DOI:10.1364/OL.38.005280 · 3.18 Impact Factor

Full-text

Download
17 Downloads
Available from
Jul 31, 2014