Article

HFE polymorphisms influence the response to chemotherapeutic agents via induction of p16INK4A.

Department of Neurosurgery, The Pennsylvania State University College of Medicine, MS Hershey Medical Center, Hershey, PA 17033-0850, USA.
International Journal of Cancer (Impact Factor: 6.2). 12/2010; 129(9):2104-14. DOI: 10.1002/ijc.25888
Source: PubMed

ABSTRACT HFE is a protein that impacts cellular iron uptake. HFE gene variants are identified as risk factors or modifiers for multiple diseases. Using HFE stably transfected human neuroblastoma cells, we found that cells carrying the C282Y HFE variant do not differentiate when exposed to retinoic acid. Therefore, we hypothesized HFE variants would impact response to therapeutic agents. Both the human neuroblastoma and glioma cells that express the C282Y HFE variant are resistant to Temodar, geldanamycin and γ-radiation. A gene array analysis revealed that p16INK4A (p16) expression was increased in association with C282Y expression. Decreasing p16 protein by siRNA resulted in increased vulnerability to all of the therapeutic agents suggesting that p16 is responsible for the resistance. Decreasing HFE expression by siRNA resulted in a 85% decrease in p16 expression in the neuroblastoma cells but not the astrocytoma cells. These data suggest a potential direct relationship between HFE and p16 that may be cell specific or mediated by different pathways in the different cell types. In conclusion, the C282Y HFE variant impacts the vulnerability of cancer cells to current treatment strategies apparently by increasing expression of p16. Although best known as a tumor suppressor, there are multiple reports that p16 is elevated in some forms of cancer. Given the frequency of the HFE gene variants, as high as 10% of the Caucasian population, these data provide compelling evidence that the C282Y HFE variant should be part of a pharmacogenetic strategy for evaluating treatment efficacy in cancer cells.

0 Bookmarks
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The standard chemotherapy for brain tumors is temozolomide (TMZ), however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu) nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT) but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.
    PLoS ONE 09/2014; 9(9):e108166. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins involved in iron regulation are modifiers of cancer risk and progression. Of these, the HFE protein (high iron gene and its protein product) is of particular interest because of its interaction with both iron handling and immune function and the high rate of genetic polymorphisms resulting in a mutant protein. Clinical studies suggest that HFE polymorphisms increase the risk of certain cancers, but the inconsistent outcomes suggest a more nuanced effect, possibly interacting with other genetic or environmental factors. Some basic science research has been conducted to begin to understand the implications of variant HFE genotype on cancer, but the story is far from complete. In particular, putative mechanisms exist for HFE to affect tumor progression through its role in iron handling and its major histocompatibility complex class I structural features. In this review, the current understanding of the role of HFE in cancer is described and models for future directions are identified.
    Translational Oncogenomics 01/2014; 6:1-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.
    PLoS ONE 02/2014; 9(2):e88724. · 3.53 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Sep 30, 2014