Article

Comparative Effectiveness and Toxicity of Statins Among HIV-Infected Patients

Department of Medicine, University of Washington, Seattle, WA 98104, USA.
Clinical Infectious Diseases (Impact Factor: 9.42). 02/2011; 52(3):387-95. DOI: 10.1093/cid/ciq111
Source: PubMed

ABSTRACT dyslipidemia is common and is often treated with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors (statins). Little is known about the comparative effectiveness of statins among human immunodeficiency virus (HIV)-infected patients. This study compared the effectiveness and toxicity of statins among HIV-infected patients in clinical care.
we conducted a retrospective cohort study of patients starting their initial statin medications at 2 large HIV clinics (N = 700). The primary observation was change in lipid levels during statin therapy. Secondary observations included whether individualized National Cholesterol Education Program (NCEP) goals for low density lipoprotein cholesterol (LDL-C) and non-high density lipoprotein cholesterol (non-HDL-C) levels were reached, and toxicity rates. We used linear regression to examine change in lipid levels, controlling for baseline lipid values and demographic and clinical characteristics. We conducted secondary analyses using propensity scores to address confounding by indication.
the most commonly prescribed statins were atorvastatin (N = 303), pravastatin (N = 280), and rosuvastatin (N = 95). One year after starting a statin therapy, patients who received atorvastatin or rosuvastatin had significantly greater decreases in total cholesterol, LDL-C, and non-HDL-C than patients on pravastatin. The likelihood of reaching NCEP goals for LDL-C levels was higher with the use of rosuvastatin (OR 2.1; P = .03) and atorvastatin (odds ratio [OR], 2.1; P = .001) compared with that of pravastatin. The likelihood of reaching NCEP goals for non-HDL-C levels was higher for rosuvastatin (OR 2.3; P = .045) but not atorvastatin (OR, 1.5; P = .1) compared with pravastatin. Toxicity rates were similar for all 3 statins: 7.3% for atorvastatin, 6.1% for pravastatin, and 5.3% for rosuvastatin.
our findings suggest that atorvastatin and rosuvastatin are preferable to pravastatin for treatment of HIV-infected patients with dyslipidemia, due to greater declines in total cholesterol, LDL-C, and non-HDL-C, with similar lower toxicity rates.

Full-text

Available from: Heidi M Crane, May 30, 2015
0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Risk and manifestations of cardiovascular disease (CVD) in patients infected with human immunodeficiency virus (HIV) will continue to evolve as improved treatments and life expectancy of these patients increases. Although initiation of antiretroviral (ARV) therapy has been shown to reduce this risk, some ARV medications may induce metabolic abnormalities, further compounding the risk of CVD. In this patient population, both pharmacologic and nonpharmacologic strategies should be employed to treat and reduce further risk of CVD. This review summarizes epidemiology data of the risk factors and development of CVD in HIV and provides recommendations to manage CVD in HIV-infected patients.
    The Open AIDS Journal 03/2015; 9(1):23-37. DOI:10.2174/1874613601509010023
  • [Show abstract] [Hide abstract]
    ABSTRACT: : Globally, the HIV epidemic is evolving. Life expectancy for HIV-infected individuals has been extended because of more effective and more widely available antiretroviral therapy. As a result, chronic noncommunicable diseases (NCDs) have become important comorbid conditions. In particular, HIV-infected persons are increasingly at risk of developing metabolic (diabetes, dyslipidemias), body composition (lipodystrophy, overweight/obesity) and bone mineral density abnormalities. We have summarized the published epidemiological and clinical literature regarding these HIV-NCD comorbidities in low- and middle-income countries (LMICs). We found important gaps in knowledge. Specifically, there are few studies that use standardized methods and metrics; consequently, prevalence or incidence data are not comparable. There are very little or no data regarding the effectiveness or cost-effectiveness of clinical monitoring or therapeutic interventions for metabolic disorders in HIV-infected individuals. Also, although NCDs continue to grow in the HIV-negative population of most LMICs, there are few data comparing the incidence of NCD comorbidities between HIV-infected and HIV-negative populations. To address these gaps, we describe potential research and capacity development priorities for the future.
    JAIDS Journal of Acquired Immune Deficiency Syndromes 09/2014; 67 Suppl 1:S27-39. DOI:10.1097/QAI.0000000000000256 · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV) is a chronic disease associated with dyslipidemia and insulin resistance. In addition, the administration of combination antiretroviral therapy is associated with an increase in the incidence of metabolic risk factors (insulin resistance, lipoatrophy, dyslipidemia, and abnormalities of fat distribution in HIV patients). HIV dyslipidemia is a common problem, and associated with an increase in incidence of cardiovascular disease. Further challenges in the management of HIV dyslipidemia are the presence of diabetes and metabolic syndrome, nonalcoholic fatty liver disease, hypothyroidism, chronic kidney disease, the risk of diabetes associated with statin administration, age and ethnicity, and early menopause in females. Dyslipidemia in patients with HIV is different from the normal population, due to the fact that HIV increases insulin resistance and HIV treatment not only may induce dyslipidemia but also may interact with lipid-lowering medication. The use of all statins (apart from simvastatin and lovastatin) is safe and effective in HIV dyslipidemia, and the addition of ezetimibe, fenofibrate, fish oil, and niacin can be used in statin-unresponsive HIV dyslipidemia. The management of dyslipidemia and cardiovascular disease risks associated with HIV is complex, and a certain number of patients may require management in specialist clinics run by specialist physicians in lipid disorders. Future research is needed to address best strategies in the management of hyperlipidemia with HIV infection.
    HIV/AIDS - Research and Palliative Care 01/2015; 7:1-10. DOI:10.2147/HIV.S46028