Article

Evolution of Bacterial Phosphoglycerate Mutases: Non-Homologous Isofunctional Enzymes Undergoing Gene Losses, Gains and Lateral Transfers

Division of Parasitology, New England Biolabs, Inc, Ipswich, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 10/2010; 5(10):e13576. DOI: 10.1371/journal.pone.0013576
Source: PubMed

ABSTRACT The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms.
To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect.
Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain.

Download full-text

Full-text

Available from: Sanjay Kumar, Jul 02, 2015
0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of the haloalkanoate dehalogenase superfamily (HADSF) has uncovered homologues occurring within the same organism that are found to possess broad, overlapping substrate specificities, and low catalytic efficiencies. Here we compare the HADSF phosphatase BT1666 from Bacteroides thetaiotaomicron VPI-5482 to a homologue with high sequence identity (40%) from the same organism BT4131, a known hexose-phosphate phosphatase. The goal is to find whether these enzymes represent duplicated versus paralogous activities. The X-ray crystal structure of BT1666 was determined to 1.82 Å resolution. Superposition of the BT1666 and BT4131 structures revealed a conserved fold and identical active sites suggestive of a common physiological substrate. The steady-state kinetic constants for BT1666 were determined for a diverse panel of phosphorylated metabolites to define its substrate specificity profile and overall level of catalytic efficiency. Whereas BT1666 and BT4131 are both promiscuous, their substrate specificity profiles are distinct. The catalytic efficiency of BT1666 (k(cat) /K(m) = 4.4 × 10(2) M(-1) s(-1) for the best substrate fructose 1,6-(bis)phosphate) is an order of magnitude less than that of BT4131 (k(cat) /K(m) = 6.7 × 10(3) M(-1) s(-1) for 2-deoxyglucose 6-phosphate). The seemingly identical active-site structures point to sequence variation outside the active site causing differences in conformational dynamics or subtle catalytic positioning effects that drive the divergence in catalytic efficiency and selectivity. The overlapping substrate profiles may be understood in terms of differential regulation of expression of the two enzymes or a conferred advantage in metabolic housekeeping functions by having a larger range of possible metabolites as substrates.
    Proteins Structure Function and Bioinformatics 11/2011; 79(11):3099-107. DOI:10.1002/prot.23137 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.
    Journal of bacteriology 12/2011; 194(3):686-701. DOI:10.1128/JB.06112-11 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The global proteomic responses of the foodborne pathogen Listeria monocytogenes strain Scott A, during active growth and transition to the stationary growth phase under progressively more acidic conditions, created by addition of lactic acid and HCl, were investigated using label-free liquid chromatography/tandem mass spectrometry. Approximately 56% of the Scott A proteome was quantitatively assessable, and the data provides insight into its acquired acid tolerance response (ATR) as well as the relation of the ATR to the growth phase transition. Alterations in protein abundance due to acid stress were focused in proteins belonging to the L. monocytogenes common genome, with few strain-dependent proteins involved. However, one of the two complete prophage genomes appeared to enter lysogeny. During progressive acidification, the growth rate and yield were reduced 55% and 98%, respectively, in comparison to nonacidified control cultures. The maintenance of the growth rate was determined to be connected to activation of cytoplasmic pH homeostatic mechanisms while cellular reproductive-related and cell component turnover proteins were markedly more abundant in acid stressed cultures. Cell biomass accumulation was impeded predominantly due to repression of phosphodonor-linked enzymes involved with sugar phosphotransfer, glycolysis, and cell wall polymer biosynthesis. Acidification caused a shift from heterofermentation to an oxidatively stressed state in which ATP appears to be generated mainly through the pyruvate dehydrogenase/pyruvate oxidase/phosphotransacetylase/acetate kinase and branched chain acid dehydrogenase pathways. Analysis of regulons indicated energy conservation occurs due to repression by the GTP/isoleucine sensor CodY and also the RelA mediated stringent response. Whole proteome analysis proved to be an effective way to highlight proteins involved with the acquisition of the ATR.
    Journal of Proteome Research 02/2012; 11(4):2409-26. DOI:10.1021/pr201137c · 5.00 Impact Factor