Article

DRD2/AKT1 interaction on D2 c-AMP independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia.

Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University Aldo Moro, 70124 Bari, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2011; 108(3):1158-63. DOI: 10.1073/pnas.1013535108
Source: PubMed

ABSTRACT The D2/AKT1/GSK-3β signaling pathway has been involved in the downstream intracellular effects of dopamine, in the pathophysiology of cognitive deficits and related brain activity in schizophrenia, as well as in response to treatment with antipsychotics. Polymorphisms in the D2 (DRD2 rs1076560) and AKT1 (AKT1 rs1130233) genes have been associated with their respective protein expression and with higher-order cognition and brain function, including attention. Given the strong potential for their relationship, we investigated the interaction of these polymorphisms on multiple molecular and in vivo phenotypes associated with this signaling pathway. We measured AKT1 and GSK-3β proteins and phosphorylation in human peripheral blood mononuclear cells, functional MRI cingulate response during attentional control, behavioral accuracy during sustained attention, and response to 8 wk of treatment with olanzapine in a total of 190 healthy subjects and 66 patients with schizophrenia. In healthy subjects, we found that the interaction between the T allele of DRD2 rs1076560 and the A allele of AKT1 rs1130233 was associated with reduced AKT1 protein levels and reduced phosphorylation of GSK-3β, as well as with altered cingulate response and reduced behavioral accuracy during attentional processing. On the other hand, interaction of these two alleles was associated with greater improvement of Positive and Negative Syndrome Scale scores in patients with schizophrenia after treatment with olanzapine. The present results indicate that these functional polymorphisms are epistatically associated with multiple phenotypes of relevance to schizophrenia. Our results also lend support to further investigation of this downstream molecular pathway in the etiology and treatment of this disorder.

0 Followers
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: "Schizotypy" is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [(123)I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.
    Frontiers in Behavioral Neuroscience 07/2014; 8(235):eCollection2014. DOI:10.3389/fnbeh.2014.00235 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both nicotine and alcohol addictions are severe public health hazards worldwide. Various twin and family studies have demonstrated that genetic factors contribute to vulnerability to these addictions; however, the susceptibility genes and the variants underlying them remain largely unknown. Of susceptibility genes investigated for addictions, DRD2 has received much attention. Considering new evidence supporting the association of DRD2 and its adjacent gene ankyrin repeat and kinase domain containing 1 (ANKK1) with various addictions, in this paper, we provide an updated view of the involvement of variants in DRD2 and ANKK1 in the etiology of nicotine dependence (ND) and alcohol dependence (AD) based on linkage, association, and molecular studies. This evidence shows that both genes are significantly associated with addictions; however the association with ANKK1 appears to be stronger. Thus, both more replication studies in independent samples and functional studies of some of these variants are warranted.
    Molecular Neurobiology 08/2014; DOI:10.1007/s12035-014-8826-2 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. What determines inter-individual variability to impairments in behavioural control that may underlie road-traffic accidents, and impulsive and violent behaviours occurring under the influence of cannabis, the most widely used illicit drug worldwide? Method. Employing a double-blind, repeated-measures design, we investigated the genetic and neural basis of variable sensitivity to cannabis-induced behavioural dyscontrol in healthy occasional cannabis users. Acute oral challenge with placebo or.9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, was combined with functional magnetic resonance imaging, while participants performed a response inhibition task that involved inhibiting a prepotent motor response. They were genotyped for rs1130233 single nucleotide polymorphisms (SNPs) of the protein kinase B (AKT1) gene. Results. Errors of inhibition were significantly (p=0.008) increased following administration of THC in carriers of the A allele, but not in G allele homozygotes of the AKT1 rs1130233 SNP. The A allele carriers also displayed attenuation of left inferior frontal response with THC evident in the sample as a whole, while there was a modest enhancement of inferior frontal activation in the G homozygotes. There was a direct relationship (r=-0.327, p=0.045) between the behavioural effect of THC and its physiological effect in the inferior frontal gyrus, where AKT1 genotype modulated the effect of THC. Conclusions. These results require independent replication and show that differing vulnerability to acute psychomotor impairments induced by cannabis depends on variation in a gene that influences dopamine function, and is mediated through modulation of the effect of cannabis on the inferior frontal cortex, that is rich in dopaminergic innervation and critical for psychomotor control.
    Psychological Medicine 04/2014; 44(15):1-14. DOI:10.1017/S0033291714000920 · 5.43 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
May 29, 2014

Similar Publications