Article

Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons.

Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA.
The Journal of clinical investigation (Impact Factor: 13.77). 01/2011; 121(1):355-68. DOI: 10.1172/JCI45106
Source: PubMed

ABSTRACT Studies in humans and rodents indicate that a minimum amount of stored energy is required for normal pubertal development. The adipocyte-derived hormone leptin is a key metabolic signal to the neuroendocrine reproductive axis. Humans and mice lacking leptin or the leptin receptor (LepR) (ob/ob and db/db mice, respectively) are infertile and fail to enter puberty. Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility, but the exact site or sites of leptin action are unclear. Here, we found that genetic deletion of LepR selectively from hypothalamic Kiss1 neurons in mice had no effect on puberty or fertility, indicating that direct leptin signaling in Kiss1 neurons is not required for these processes. However, bilateral lesions of the ventral premammillary nucleus (PMV) of ob/ob mice blunted the ability of exogenous leptin to induce sexual maturation. Moreover, unilateral reexpression of endogenous LepR in PMV neurons was sufficient to induce puberty and improve fertility in female LepR-null mice. This LepR reexpression also normalized the increased hypothalamic GnRH content characteristic of leptin-signaling deficiency. These data suggest that the PMV is a key site for leptin's permissive action at the onset of puberty and support the hypothesis that the multiple actions of leptin to control metabolism and reproduction are anatomically dissociated.

0 Followers
 · 
182 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis.
    Frontiers in Endocrinology 11/2014; 5:198. DOI:10.3389/fendo.2014.00198
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Achievement of sexual maturation and maintenance of fertility in adulthood are functions that are sensitive to the metabolic status of the organism, particularly the magnitude of fat reserves. In this sense, the adipocyte-derived hormone, leptin, plays a major role in linking metabolic cues and the control of multiple neuroendocrine axes. The hypothalamus is a key site mediating leptin actions, including those involved in the modulation of the hypothalamus-pituitary-gonads (HPG) axis at different stages of development and in different environmental conditions. In the present review, we provide an update of the role of leptin in reproduction and discuss its interactions with neurons, neurotransmitters and downstream targets of the reproductive axis, with a special emphasis on the actions of leptin in the central nervous system. We hope this review will contribute to the understanding of the mechanisms whereby metabolic signals, especially leptin, influence the reproductive neuroendocrine axis modulating its activity in different nutritional states. Special attention will be given to recent advances in the identification of key hypothalamic sites and signaling pathways relevant to leptin's action in reproductive control.
    Hormone molecular biology and clinical investigation 09/2014; 19(3):141-9. DOI:10.1515/hmbci-2014-0017
  • [Show abstract] [Hide abstract]
    ABSTRACT: RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), seems to be an important regulator of the hypothalamus-pituitary-gonadal (HPG) reproductive axis. Leptin, a permissive hormonal regulator of fertility, provides energy signal to brain. According to current view, leptin does not act directly on gonadotrophin-releasing hormone (GnRH) neurons. RFRP-3 neurons have been shown to express leptin receptors. The goal of the present study was to examine whether leptin acts through RFRP-3 neurons to modulate activity of the GnRH neurons. For this aim, the effects of leptin on intracellular free Ca(2+) levels ([Ca(2+)]i) in RFRP-3 neurons were investigated by using in vitro calcium imaging system. In the present study, rHypoE-7 cell line was used as a model to explore the effects of leptin on RFRP-3 neurons. rHypoE-7 cells were plated on glass coverslip and loaded with 1μM Fura-2 AM. [Ca(2+)]i responses were quantified by the changes in 340/380 ratio. Leptin (0.1-10μM) caused increases in [Ca(2+)]i in a dose-dependent manner. The changes in [Ca(2+)]i were significantly attenuated by pre-treatment with protein kinase C inhibitor. These results demonstrate that leptin activates intracellular calcium signaling in RFRP-3 neurons through PKC-dependent pathway, and thus leptin may exert its effect on GnRH neurons by means of RFRP-3 cells. Copyright © 2015. Published by Elsevier B.V.
    Brain Research 01/2015; 1601. DOI:10.1016/j.brainres.2014.12.053 · 2.83 Impact Factor

Full-text (2 Sources)

Download
42 Downloads
Available from
May 27, 2014