Developmental plasticity of immune defence in two life-history ecotypes of the garter snake, Thamnophis elegans - a common-environment experiment

Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA.
Journal of Animal Ecology (Impact Factor: 4.73). 03/2011; 80(2):431-7. DOI: 10.1111/j.1365-2656.2010.01785.x
Source: PubMed

ABSTRACT 1. Ecoimmunological theory predicts a link between life-history and immune-defence strategies such that fast-living organisms should rely more on constitutive innate defences compared to slow-living organisms. An untested assumption of this hypothesis is that the variation in immune defence associated with variation in life history has a genetic basis. 2. Replicate populations of two life-history ecotypes of the garter snake Thamnophis elegans provide an ideal system in which to test this assumption. Free-ranging snakes of the fast-living ecotype, which reside in lakeshore habitats, show higher levels of three measures of constitutive innate immunity than those of the slow-living ecotype, which inhabit meadows around the lake. Although this pattern is consistent with the ecoimmunological pace-of-life hypothesis, environmental differences between the lakeshore and meadow habitats could also explain the observed differences in immune defence. 3. We performed a common-environment experiment to distinguish between these alternatives. Snakes born and raised in common-environment conditions reflected the immune phenotype of their native habitats when sampled at 4 months of age (i.e. fast-living lakeshore snakes showed higher levels of natural antibodies, complement activity and bactericidal competence than slow-living meadow snakes), but no longer showed differences when 19 months old. 4. This suggests that the differences in innate immunity observed between the two ecotypes have an important - and likely age-specific - environmental influence, with these immune components showing developmental plasticity. A genetic effect in early life may also be present, but further research is needed to confirm this possibility and therefore provide a more definitive test of the ecoimmunological pace-of-life hypothesis in this system.


Available from: Maria G. Palacios, Jun 15, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Climate change may subject animals to increasingly stressful environmental conditions, which could have negative physiological consequences if stress levels are elevated for long periods. We conducted a manipulative experiment to determine the effects of a novel climate on stress levels and immune function in a model reptile species, the painted turtle. We collected turtles from four populations across the species' geographic range and housed them in a common-garden in one population's local climate. We measured levels of the stress hormone corticosterone and tested two aspects of innate immune function, bactericidal capacity and natural antibody agglutination, at the time of capture (baseline) and three additional time points over 1 year. The four populations did not differ in corticosterone levels over the course of 1 year, and corticosterone levels were also similar at each sampling period except that post-hibernation corticosterone levels were significantly lower than the previous three time points. Furthermore, we found no evidence that elevated corticosterone depressed immune function in the painted turtle. Our study suggests that turtles exposed to novel climatic conditions did not display a detectable stress response, nor did the novel climate depress immune function in the transplanted populations. Therefore, in terms of innate immune function, turtles may be relatively resilient to at least small changes in climatic conditions. J. Exp. Zool. 00A: 1-9, 2015. © 2015 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part A Ecological Genetics and Physiology 02/2015; 323(3). DOI:10.1002/jez.1902 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system-through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody-antigen interactions. In current theory, the precise mechanisms of vertebrate immune function oft are inadequately considered as diverse selective pressures on the evolution of pathogens. We propose that the strength of adaptive immune function and pace of life together determine many of the important dynamics of host-pathogen evolution, namely, that hosts with a short lifespan and innate immunity or with a long lifespan and strong adaptive immunity are expected to drive the rapid evolution of their populations of pathogens. Long-lived hosts that rely primarily on innate immune functions are more likely to use defense mechanisms of tolerance (instead of resistance), which are not expected to act as a selection pressure for the rapid evolution of pathogens' virulence.
    Integrative and Comparative Biology 04/2014; 54(3). DOI:10.1093/icb/icu021 · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.
    Physiological and Biochemical Zoology 09/2013; 86(5):547-558. DOI:10.1086/672371 · 2.05 Impact Factor