The Effect of Metformin and Standard Therapy versus Standard Therapy alone in Nondiabetic Patients with Insulin Resistance and Nonalcoholic Steatohepatitis (NASH): A Pilot Trial

Department of Gastroenterology, Naval Medical Center San Diego, San Diego, CA, USA .
Therapeutic Advances in Gastroenterology (Impact Factor: 3.93). 05/2009; 2(3):157-63. DOI: 10.1177/1756283X09105462
Source: PubMed

ABSTRACT Nonalcoholic steatohepatitis (NASH) is increasing in prevalence and is related to underlying insulin resistance. The aim of this study was to assess the efficacy of metformin on the characteristic histopathologic lesions of NASH. This was a 12-month prospective, randomized, placebo-controlled trial comparing diet and exercise alone to diet, exercise and metformin in nondiabetic patients with insulin resistance and NASH. Patients were randomized to either group A or B. Group A received placebo, dietary counseling, recommendations for weight loss and exercise four times per week. Group B received long-acting metformin 500 mg daily (titrated to 1000 mg daily) plus dietary counseling, recommendations for weight loss and exercise four times per week. Histopathology was assessed at 12 months and biopsies were scored by two pathologists who were blinded to all data. Twenty-three subjects were screened and 19 were randomized to either group A (n ¼10) or group B (n¼ 9). Seven of the 10 subjects in group A completed the study including repeat liver biopsy while all patients in group B completed the study. Body mass index improved in both groups decreasing by 1.7 kg/m(2) in group A and 0.9 kg/m(2) in group B (not significant, control versus treatment). Homeostasis model assessment of insulin resistance scores improved in both groups decreasing by 1.14 in group A and 1.58 in group B (not significant, control versus treatment). No significant difference in histopathology was seen between groups on follow-up liver biopsy. Metformin appeared to have little effect in improvement in liver function tests or liver histology in nondiabetic patients with insulin resistance and NASH. Decrease in BMI through diet and exercise significantly improved HOMA-IR scores, serum aminotransferases and liver histology.

11 Reads
  • Source
    • "Interestingly, a recent study using ob/ob mice showed that metformin alleviates NASH by restoring SIRT1-mediated autophagy induction, which is independent of the AMPK pathway [40]. In contrast, metformin treatment had no beneficial effect on liver histology in two randomized trials [41] [42]. Thus, the efficacy of metformin in the treatment of NAFLD has not been confirmed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonalcoholic fatty liver disease (NAFLD) is a chronic condition characterized by fat accumulation combined with low-grade inflammation in the liver. A large body of clinical and experimental data shows that increased flux of free fatty acids from increased visceral adipose tissue can lead to NAFLD related with insulin resistance. Thus, individuals with obesity, insulin resistance, and dyslipidemia are at the greatest risk of developing NAFLD. Conversely, NAFLD is one of the phenotypes of insulin resistance or metabolic syndrome. Many researchers have discovered a close association between NAFLD and insulin resistance, and focused on the role of NAFLD in the development of type 2 diabetes. Further, substantial evidence has suggested the association between NAFLD and cardiovascular disease (CVD). In the current review, we provide a plausible mechanistic link between NAFLD and CVD and the potential of the former as a therapeutic target based on pathophysiology. We also discuss in detail about the role of insulin resistance, oxidative stress, low-grade inflammation, abnormal lipid metabolism, gut microbiota, changes of biomarkers, and genetic predisposition in the pathological linking between NAFLD and cardiometabolic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    International journal of cardiology 08/2015; 201:408-414. DOI:10.1016/j.ijcard.2015.08.107 · 4.04 Impact Factor
  • Source
    • "However, only few studies shown an improvement in liver histology [77, 78, 81, 83]. These results have not been confirmed by the larger randomized clinical trials [76, 82, 85, 88] comparing metformin and lifestyle intervention with lifestyle changes alone. Results in pediatric population were similar to those of adults, thus supporting positive effects on biochemistry liver profile and metabolic parameters, but not on liver histology. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance is a clinical condition shared by many diseases besides type 2 diabetes (T2DM) such as obesity, polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD). Experimental evidence, produced over the years, suggests that metformin has many benefits in the treatment of these diseases. Metformin is a first-line drug in the treatment of overweight and obese type 2 diabetic patients, offering a selective pathophysiological approach by its effect on insulin resistance. Moreover, a number of studies have established the favorable effect of metformin on body weight, not only when evaluating BMI, but also if body mass composition is considered, through the reduction of fat mass. In addition, it reduces insulin resistance, hyperinsulinemia, lipid parameters, arterial hypertension and endothelial dysfunction. In particular, a new formulation of metformin extended-release (ER) is now available with different formulation in different countries. Metformin ER delivers the active drug through hydrated polymers which expand safe uptake of fluid, prolonging gastric transit and delaying drug absorption in the upper gastrointestinal tract. In addition, Metformin ER causes a small, but statistically significant decrease in BMI, when added to a lifestyle intervention program in obese adolescents. Because of the suggested benefits for the treatment of insulin resistance in many clinical conditions, besides type 2 diabetes, the prospective exists that more indications for metformin treatment are becoming a reality.
    Eating and weight disorders: EWD 07/2014; 19(3). DOI:10.1007/s40519-014-0139-y · 0.79 Impact Factor
  • Source
    • "Metformin enters hepatocytes through the organic cation transporter-1 (OCT-1) transporter, and there it is thought to alter mitochondrial function and AMP kinase (AMPK) activity [2], resulting in decreased hepatic glucose production and glucose lowering, while AMPK activation in skeletal muscle may increase glucose utilization [3]. In addition, metformin improves the lipid profile [4], restores ovarian function in polycystic ovary syndrome [5], reduces fatty infiltration of the liver [6], and lowers microvascular and macrovascular complications associated with T2DM. Recently, metformin has been proposed as an adjuvant treatment for cancer [7], as a treatment for gestational diabetes and for the prevention of T2DM in pre-diabetic individuals [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metformin, a biguanide derivate, has pleiotropic effects beyond glucose reduction, including improvement of lipid profiles and lowering microvascular and macrovascular complications associated with type 2 diabetes mellitus (T2DM). These effects have been ascribed to adenosine monophosphate-activated protein kinase (AMPK) activation in the liver and skeletal muscle. However, metformin effects are not attenuated when AMPK is knocked out and intravenous metformin is less effective than oral medication, raising the possibility of important gut pharmacology. We hypothesized that the pharmacology of metformin includes alteration of bile acid recirculation and gut microbiota resulting in enhanced enteroendocrine hormone secretion. In this study we evaluated T2DM subjects on and off metformin monotherapy to characterize the gut-based mechanisms of metformin. Subjects were studied at 4 time points: (i) at baseline on metformin, (ii) 7 days after stopping metformin, (iii) when fasting blood glucose (FBG) had risen by 25% after stopping metformin, and (iv) when FBG returned to baseline levels after restarting the metformin. At these timepoints we profiled glucose, insulin, gut hormones (glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose-dependent insulinotropic peptide (GIP) and bile acids in blood, as well as duodenal and faecal bile acids and gut microbiota. We found that metformin withdrawal was associated with a reduction of active and total GLP-1 and elevation of serum bile acids, especially cholic acid and its conjugates. These effects reversed when metformin was restarted. Effects on circulating PYY were more modest, while GIP changes were negligible. Microbiota abundance of the phylum Firmicutes was positively correlated with changes in cholic acid and conjugates, while Bacteroidetes abundance was negatively correlated. Firmicutes and Bacteroidetes representation were also correlated with levels of serum PYY. Our study suggests that metformin has complex effects due to gut-based pharmacology which might provide insights into novel therapeutic approaches to treat T2DM and associated metabolic diseases.Trial NCT01357876
    PLoS ONE 07/2014; 9(7):e100778. DOI:10.1371/journal.pone.0100778 · 3.23 Impact Factor
Show more