Article

Fox-3 and PSF interact to activate neural cell-specific alternative splicing.

Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
Nucleic Acids Research (Impact Factor: 8.81). 12/2010; 39(8):3064-78. DOI: 10.1093/nar/gkq1221
Source: PubMed

ABSTRACT Fox-1 family (Fox) proteins, which consist of Fox-1 (A2BP1), Fox-2 (Rbm9) and Fox-3 (NeuN) in mammals, bind to the RNA element UGCAUG and regulate alternative pre-mRNA splicing. However the mechanisms for Fox-regulated splicing are largely unknown. We analyzed the expression pattern of the three Fox proteins as well as neural cell-specific alternative splicing of a cassette exon N30 of nonmuscle myosin heavy chain (NMHC) II-B in the mouse central nervous system. Histological and biochemical analyses following fluorescence-activated cell sorting demonstrate a positive correlation of N30 inclusion and Fox-3 expression. Further, we identified polypyrimidine tract binding protein-associated splicing factor (PSF) as an interacting protein with Fox-3 by affinity-chromatography. In cultured cells, enhancement of N30 inclusion by Fox-3 depends on the presence of PSF. PSF enhances N30 inclusion in a UGCAUG-dependent manner, although it does not bind directly to this element. Fox-3 is recruited to the UGCAUG element downstream of N30 in the endogenous NMHC II-B transcript in a PSF-dependent manner. This study is the first to identify PSF as a coactivator of Fox proteins and provides evidence that the Fox-3 and PSF interaction is an integral part of the mechanism by which Fox proteins regulate activation of alternative exons via a downstream intronic enhancer.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-binding proteins (RBPs) regulate numerous aspects of gene expression; thus, identification of their endogenous targets is important for understanding their cellular functions. Here we identified transcriptome-wide targets of Rbfox3 in neuronally differentiated P19 cells and mouse brain by using photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). Although Rbfox3 is known to regulate pre-mRNA splicing through binding the UGCAUG motif, PAR-CLIP analysis revealed diverse Rbfox3 targets including primary microRNAs (pri-miRNAs) that lack the UGCAUG motif. Induced expression and depletion of Rbfox3 led to changes in the expression levels of a subset of PAR-CLIP-detected miRNAs. In vitro analyses revealed that Rbfox3 functions as a positive and a negative regulator at the stage of pri-miRNA processing to precursor miRNA (pre-miRNA). Rbfox3 binds directly to pri-miRNAs and regulates the recruitment of the microprocessor complex to pri-miRNAs. Our study proposes a new function for Rbfox3 in miRNA biogenesis.
    Nature Structural & Molecular Biology 09/2014; · 11.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence has indicated that the transcription and processing of precursor mRNA (pre-mRNA) are functionally coupled to modulate gene expression. In collaboration with coregulators, several steroid hormone receptors have previously been shown to directly affect alternative pre-mRNA splicing coupled to hormone-induced gene transcription; however, the roles of the thyroid hormone receptor (TR) and its coregulators in alternative splicing coordinated with transcription remain unknown. In the present study, we constructed a luciferase reporter and CD44 alternative splicing (AS) minigene driven by a minimal promoter carrying 2 copies of the palindromic thyroid hormone-response element. We then examined whether TR could modulate pre-mRNA processing coupled to triiodothyronine (T3)-induced gene transcription using luciferase reporter and splicing minigene assays in HeLa cells. In the presence of cotransfected TRβ1, T3 increased luciferase activities along with the inclusion of the CD44 variable exons 4 and 5 in a dose- and time-dependent manner. In contrast, cotransfected TRβ1 did not affect the exon-inclusion of the CD44 minigene driven by the cytomegalovirus promoter. T3-induced two-exon inclusion was significantly increased by the cotransfection of the TR-associated protein, 150-kDa, a subunit of the TRAP/Mediator complex that has recently been shown to function as a splicing factor. In contrast, T3-induced two-exon inclusion was significantly decreased by cotransfection of the polypyrimidine tract-binding protein-associated splicing factor, which was previously shown to function as a corepressor of TR. These results demonstrated that liganded TR in cooperation with its associating cofactors could modulate alternative pre-mRNA splicing coupled to gene transcription.
    Biochemical and Biophysical Research Communications 08/2014; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin-proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.
    Biochemical and Biophysical Research Communications 07/2014; · 2.28 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Dec 29, 2014