Article

Altered expression of imprinted genes in Wilms tumors.

Department of Pediatric Surgery, Research Laboratories, Ludwig-Maximilians-University of Munich, Lindwurmstrasse 2a, D-80337 Munich, Germany.
Oncology Reports (Impact Factor: 2.19). 03/2011; 25(3):817-23. DOI: 10.3892/or.2010.1113
Source: PubMed

ABSTRACT Overexpression of insulin-like growth factor 2 (IGF2), an imprinted gene located on chromosome 11p15, has been reported as a characteristic feature in various embryonal tumors, including Wilms tumor (WT). Recent studies specified loss of imprinting (LOI) in a differential methylated region (DMR) of the IGF2/H19 cluster or loss of heterozygosity (LOH), respectively, uniparental disomy (UPD) being responsible for this overexpression. However, the role of other imprinted genes in the genesis of WT is still unknown. In the current study, we analyzed transcriptional activity of the imprinted genes IGF2, H19, NNAT, DLK1, RTL1, MEG3, and MEST as well as the methylation status of the DMR of the IGF2/H19 cluster in a panel of 32 WTs. Except for H19, we detected massive overexpression of all genes in the majority of WTs compared to normal renal tissue, which was most prominent for the paternally expressed genes IGF2, NNAT, and MEST. Alterations of the H19DMR were found in two-thirds of the WTs. Moreover, we have seen a strong correlation between the transcriptional activity of IGF2, NNAT and MEST and LOI/LOH of H19DMR, which was inverse for H19. Expression of DLK1, RTL1 and MEG3 does not correlate with LOI/LOH of H19DMR. Altogether, our findings suggest that over-expression of imprinted genes is common in WTs and correlates at least for some imprinted genes with LOI of H19DMR. Thus, it may be speculated that alterations of the DNA modification machinery drive erroneous setting of methylation marks in imprinting regions throughout the genome, which leads to the concomitant activation of imprinted genes in blastomagenesis.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoallelic gene expression is typically initiated early in the development of an organism. Dysregulation of monoallelic gene expression has already been linked to several non-Mendelian inherited genetic disorders. In humans, DNA-methylation is deemed to be an important regulator of monoallelic gene expression, but only few examples are known. One important reason is that current, cost-affordable truly genome-wide methods to assess DNA-methylation are based on sequencing post-enrichment. Here, we present a new methodology based on classical population genetic theory, i.e. the Hardy-Weinberg theorem, that combines methylomic data from MethylCap-seq with associated SNP profiles to identify monoallelically methylated loci. Applied on 334 MethylCap-seq samples of very diverse origin, this resulted in the identification of 80 genomic regions featured by monoallelic DNA-methylation. Of these 80 loci, 49 are located in genic regions of which 25 have already been linked to imprinting. Further analysis revealed statistically significant enrichment of these loci in promoter regions, further establishing the relevance and usefulness of the method. Additional validation was done using both 14 whole-genome bisulfite sequencing data sets and 16 mRNA-seq data sets. Importantly, the developed approach can be easily applied to other enrichment-based sequencing technologies, like the ChIP-seq-based identification of monoallelic histone modifications.
    Nucleic Acids Research 09/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Wilms tumor 1 (WT1) gene plays an essential role in early development and differentiation of the urinary tract, particularly the kidneys. Aberrant transcriptional activity of WT1 is a key finding in the genesis of Wilms tumors (WTs). However, the mechanisms responsible for this alteration remain poorly understood. In the present study, we examined the methylation pattern of a putative CCCTC-binding factor (CTCF) binding site downstream of the WT1 gene as a potential cause of WT1 misregulation in 44 native WT specimens. We found that 16 WT cases exhibited a much higher WT1 expression compared to normal kidney tissue, and that the high mRNA expression of WT1 is strongly correlated with a high degree of DNA methylation of the CTCF binding site near the WT1 promoter. However, there was no correlation between the KTS+/KTS- splicing variants of WT1 and the methylation status of the CpGs of the CTCF binding site. Our results demonstrated an aberrant methylation pattern at a CTCF binding site downstream the WT1 gene, which is associated with an elevated WT1 transcriptional activity. Thus, methylation of the CTCF binding site may be partially responsible for the transcriptional activation of the WT1 locus and hypermethylation of this site may be an important oncogenic mechanism in the genesis of WT.
    Oncology Reports 02/2014; · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The long non-coding RNA MEG3 has been reported to be a tumor suppressor in a number of malignant tumors including gastric cancer. Several studies have shown that the regulation of MEG3 may attribute to the promoter hypermethylation. However, the mechanism of MEG3 regulation in gastric cancer is still not well understood. MiR-148a can suppress gastric tumorigenesis through regulating the expression of target genes such as DNA methyltransferase 1(DNMT-1). We examined the expression of MEG3 in 52 gastric cancer samples using quantitative real-time PCR and found the down-regulation of MEG3 in both gastric cancer tissues and cell lines. The positive correlation of MEG3 and miR-148a was further confirmed in SGC-7901 and BGC-823 gastric cancer cell lines. Hypermethylation of MEG3 differentially methylated regions was identified by methylation-specific PCR, and MEG3 expression was increased with the inhibition of methylation with siRNA to DNMT-1 in gastric cancer cells. In addition, transfection of MEG3 siRNA into gastric cancer cells diminished the suppression of proliferation induced by overexpression of miR-148a. Our results suggest that the suppression of miR-148a may contribute to the down-regulation of MEG3 in gastric cancer by modulation of DNMT-1.
    Medical Oncology 03/2014; 31(3):879. · 2.06 Impact Factor