Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse.

Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2011; 108(1):385-90. DOI: 10.1073/pnas.1011265108
Source: PubMed

ABSTRACT Cocaine addiction remains without an effective pharmacotherapy and is characterized by an inability of addicts to inhibit relapse to drug use. Vulnerability to relapse arises from an enduring impairment in cognitive control of motivated behavior, manifested in part by dysregulated synaptic potentiation and extracellular glutamate homeostasis in the projection from the prefrontal cortex to the nucleus accumbens. Here we show in rats trained to self-administer cocaine that the enduring cocaine-induced changes in synaptic potentiation and glutamate homeostasis are mechanistically linked through group II metabotropic glutamate receptor signaling. The enduring cocaine-induced changes in measures of cortico-accumbens synaptic and glial transmission were restored to predrug parameters for at least 2 wk after discontinuing chronic treatment with the cystine prodrug, N-acetylcysteine. N-acetylcysteine produced these changes by inducing an enduring restoration of nonsynaptic glutamatergic tone onto metabotropic glutamate receptors. The long-lasting pharmacological restoration of cocaine-induced glutamatergic adaptations by chronic N-acetylcysteine also caused enduring inhibition of cocaine-seeking in an animal model of relapse. These data mechanistically link nonsynaptic glutamate to cocaine-induced adaptations in excitatory transmission and demonstrate a mechanism to chronically restore prefrontal to accumbens transmission and thereby inhibit relapse in an animal model.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effectiveness of ceftriaxone treatment in attenuating relapse-like ethanol drinking behavior in male P rats following 14-weeks of continuous ethanol consumption. After 14-weeks of continuous access to free choice of 15% and 30% ethanol, male P rats were deprived of ethanol for two weeks. On the last five days of abstinence period, P rats were treated, once a day, with either saline or ceftriaxone (50 or 200 mg/kg; i.p.). This was followed by re-exposure to ethanol for the next 10 days to simulate the relapse-like ethanol drinking behavior. Ceftriaxone treatment (during abstinence) reduced ethanol intake upon re-exposure to ethanol, compared to the saline treated P rats. This statistically significant reduction in ethanol consumption in P rats following treatment with ceftriaxone (200 mg/kg/day) was observed from Day 2 to Day 9. Similarly, water consumption in P rats treated with ceftriaxone was significantly higher than the saline treated group between Day 2 and Day 7. Importantly, ceftriaxone treatment at both doses did not cause any significant changes in body weight compared to saline treated group. We report here that ceftriaxone at higher dose has been found to be effective in the attenuation of relapse-like ethanol-drinking behavior in chronic ethanol intake model. This is in accordance with previous data from our lab in cocaine animal model demonstrating that only higher dose of ceftriaxone has been effective in attenuating cocaine relapse.
    Journal of Addiction Research & Therapy 5. DOI:10.4172/2155-6105.1000183 · 1.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity has long been known to involve three key elements of neuropil, the presynapse, the postsynapse and adjacent glia. Here we review the role of the extracellular matrix in synaptic plasticity as a necessary component forming the tetrapartite synapse. We describe the role of matrix metalloproteinases as enzymes sculpting extracellular proteins and thereby creating an extracellular signaling domain required for synaptic plasticity. Specifically we focus on the role of the tetrapartite synapse in mediating the effects of addictive drugs at cortico-striatal synapses, and conclude that the extracellular signaling domain and its regulation by matrix metalloproteinases is critical for developing and expressing drug seeking behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
    Brain research 03/2015; DOI:10.1016/j.brainres.2015.03.027 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol consumption and the reinstatement of alcohol-seeking rely on glutamate and GABA transmission. Modulating these neurotransmitters may be a viable treatment strategy to prevent alcohol relapse. N-acetylcysteine (NAC) and the antibiotic ceftriaxone (CEF) alter the glial reuptake and release of glutamate while the antibiotic cefazolin (CEFAZ) modulates GABA signaling without affecting glutamate. Here, we used the extinction-reinstatement model of relapse to test the ability of these compounds to attenuate the reinstatement of alcohol-seeking. Male Sprague-Dawley rats were trained to self-administer 20% (v/v) alcohol in the home cage using an intermittent schedule (24 h on, 24 h off) for 12 sessions. Subsequently, animals self-administered alcohol during daily 45-min operant sessions for 26 sessions, followed by extinction training. We tested whether chronic administration of NAC, CEF, or CEFAZ attenuated the cue-primed reinstatement of alcohol-seeking. CEF and CEFAZ attenuated cue-primed reinstatement of alcohol-seeking while NAC had no effect. We subsequently investigated whether CEF and CEFAZ alter the self-administration of sucrose and chow pellets and if CEFAZ attenuates the reinstatement of cocaine-seeking. The operant self-administration of regular chow and sucrose was not altered by either CEF or CEFAZ. CEFAZ had no effect on cocaine reinstatement, a behavior that has been strongly tied to altered glutamate homeostasis in the nucleus accumbens. Thus the ability of CEFAZ to attenuate alcohol reinstatement likely does not involve the glial modulation of glutamate levels. The dampening of GABA transmission may be a common mechanism of action of cefazolin and ceftriaxone.
    Frontiers in Pharmacology 01/2015; 6:44. DOI:10.3389/fphar.2015.00044

Full-text (2 Sources)

Available from
Jun 3, 2014