Article

RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis.

Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2011; 108(1):331-6. DOI: 10.1073/pnas.1017241108
Source: PubMed

ABSTRACT Measles virus (MV), a member of the family Paramyxoviridae and an exclusively human pathogen, is among the most infectious viruses. A progressive fatal neurodegenerative complication, subacute sclerosing panencephalitis (SSPE), occurs during persistent MV infection of the CNS and is associated with biased hypermutations of the viral genome. The observed hypermutations of A-to-G are consistent with conversions catalyzed by the adenosine deaminase acting on RNA (ADAR1). To evaluate the role of ADAR1 in MV infection, we selectively disrupted expression of the IFN-inducible p150 ADAR1 isoform and found it caused embryonic lethality at embryo day (E) 11-E12. We therefore generated p150-deficient and WT mouse embryo fibroblast (MEF) cells stably expressing the MV receptor signaling lymphocyte activation molecule (SLAM or CD150). The p150(-/-) but not WT MEF cells displayed extensive syncytium formation and cytopathic effect (CPE) following infection with MV, consistent with an anti-MV role of the p150 isoform of ADAR1. MV titers were 3 to 4 log higher in p150(-/-) cells compared with WT cells at 21 h postinfection, and restoration of ADAR1 in p150(-/-) cells prevented MV cytopathology. In contrast to infection with MV, p150 disruption had no effect on vesicular stomatitis virus, reovirus, or lymphocytic choriomeningitis virus replication but protected against CPE resulting from infection with Newcastle disease virus, Sendai virus, canine distemper virus, and influenza A virus. Thus, ADAR1 is a restriction factor in the replication of paramyxoviruses and orthomyxoviruses.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The error-prone RNA-dependent RNA polymerase (RdRP) and external selective pressures are the driving forces for RNA viral diversity. When confounded by selective pressures, it is difficult to assess if influenza A viruses (IAV) that have a wide host range possess comparable or distinct spontaneous mutational frequency in their RdRPs. We used in-depth bioinformatics analyses to assess the spontaneous mutational frequencies of two RdRPs derived from human seasonal (A/Wuhan/359/95; Wuhan) and H5N1 (A/Vietnam/1203/04; VN1203) viruses using the mini-genome system with a common firefly luciferase reporter serving as the template. High-fidelity reverse transcriptase was applied to generate high-quality mutational spectra which allowed us to assess and compare the mutational frequencies and mutable motifs along a target sequence of the two RdRPs of two different subtypes. We observed correlated mutational spectra (τ correlation P < 0.0001), comparable mutational frequencies (H3N2:5.8 ± 0.9; H5N1:6.0 ± 0.5), and discovered a highly mutable motif "(A)AAG" for both Wuhan and VN1203 RdRPs. Results were then confirmed with two recombinant A/Puerto Rico/8/34 (PR8) viruses that possess RdRP derived from Wuhan or VN1203 (RG-PR8×Wuhan(PB2, PB1, PA, NP) and RG-PR8×VN1203(PB2, PB1, PA, NP)). Applying novel bioinformatics analysis on influenza mutational spectra, we provide a platform for a comprehensive analysis of the spontaneous mutation spectra for an RNA virus. © 2014 Cheung et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
    RNA 11/2014; 21(1). DOI:10.1261/rna.045369.114 · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenosine deaminases that act on RNA (ADARs) have been reported to be functional on various viruses. ADAR1 may exhibit antiviral or proviral activity depending on the type of virus. Human immunodeficiency virus (HIV)-1 is the most well-studied lentivirus with respect to its interaction with ADAR1, and variable results have been reported. In this study, we demonstrated that equine ADAR1 (eADAR1) was a positive regulator of equine infectious anemia virus (EIAV), another lentivirus of the Retroviridae family. First, eADAR1 significantly promoted EIAV replication, and the enhancement of viral protein expression was associated with the long terminal repeat (LTR) and Rev response element (RRE) regions. Second, the RNA binding domain 1 of eADAR1 was essential only for enhancing LTR-mediated gene expression. Third, in contrast with APOBEC proteins, which have been shown to reduce lentiviral infectivity, eADAR1 increased the EIAV infectivity. This study indicated that eADAR1 was proviral rather than antiviral for EIAV.
    Virology 02/2015; 476. DOI:10.1016/j.virol.2014.12.038 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform.