Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy.

Biology Department, College of William and Mary, Williamsburg, Virginia 23187-8795, USA.
Plant physiology (Impact Factor: 7.39). 02/2011; 155(2):735-50. DOI: 10.1104/pp.110.168757
Source: PubMed

ABSTRACT Maintenance of indeterminacy is fundamental to the generation of plant architecture and a central component of the plant life strategy. Indeterminacy in plants is a characteristic of shoot and root meristems, which must balance maintenance of indeterminacy with organogenesis. The Petunia hybrida HAIRY MERISTEM (HAM) gene, a member of the GRAS family of transcriptional regulators, promotes shoot indeterminacy by an undefined non-cell-autonomous signaling mechanism(s). Here, we report that Arabidopsis (Arabidopsis thaliana) mutants triply homozygous for knockout alleles in three Arabidopsis HAM orthologs (Atham1,2,3 mutants) exhibit loss of indeterminacy in both the shoot and root. In the shoot, the degree of penetrance of the loss-of-indeterminacy phenotype of Atham1,2,3 mutants varies among shoot systems, with arrest of the primary vegetative shoot meristem occurring rarely or never, secondary shoot meristems typically arresting prior to initiating organogenesis, and inflorescence and flower meristems exhibiting a phenotypic range extending from wild type (flowers) to meristem arrest preempting organogenesis (flowers and inflorescence). Atham1,2,3 mutants also exhibit aberrant shoot phyllotaxis, lateral organ abnormalities, and altered meristem morphology in functioning meristems of both rosette and inflorescence. Root meristems of Atham1,2,3 mutants are significantly smaller than in the wild type in both longitudinal and radial axes, a consequence of reduced rates of meristem cell division that culminate in root meristem arrest. Atham1,2,3 phenotypes are unlikely to reflect complete loss of HAM function, as a fourth, more distantly related Arabidopsis HAM homolog, AtHAM4, exhibits overlapping function with AtHAM1 and AtHAM2 in promoting shoot indeterminacy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification and fine mapping of robust quantitative trait loci (QTLs)/genes governing important agro-morphological traits in chickpea still lacks systematic efforts at a genome-wide scale involving wild Cicer accessions. In this context, an 834 simple sequence repeat and single-nucleotide polymorphism marker-based high-density genetic linkage map between cultivated and wild parental accessions (Cicer arietinum desi cv.ICC4958andCicer reticulatumwild cv.ICC17160)was constructed. This inter-specific genetic map comprising eight linkage groups spanned a map length of 949.4 cM with an average inter-marker distance of 1.14 cM. Eleven novel major genomic regions harbouring 15 robust QTLs (15.6–39.8% R2 at 4.2–15.7 logarithm of odds) associated with four agro-morphological traits (100-seed weight, pod and branch number/plant and plant hairiness) were identified and mapped on chickpea chromosomes. Most of theseQTLsshowedpositiveadditivegeneeffects with effectivealleliccontribution fromICC4958,particularly for increasing seed weight (SW) and pod and branch number. One robust SW-influencing major QTL region (qSW4.2) has been narrowed down by combining QTL mapping with high-resolution QTL regionspecific association analysis, differential expression profiling and gene haplotype-based association/LD mapping. This enabled to delineate a strong SW-regulating ABI3VP1 transcription factor (TF) gene at traitspecific QTL interval and consequently identified favourable natural allelic variants and superior high seed weight-specific haplotypes in the upstream regulatory region of this gene showing increased transcript expression during seed development. The genes (TFs) harbouring diverse trait-regulating QTLs, once validated and fine-mapped by our developed rapid integrated genomic approach and through gene/QTL map-based cloning, can be utilized as potential candidates for marker-assisted genetic enhancement of chickpea.
    DNA Research 10/2014; 21(6). DOI:10.1093/dnares/dsu031 · 4.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cis regulatory elements (CREs), located within promoter regions, play a significant role in the blueprint for transcriptional regulation of genes. There is a growing interest to study the combinatorial nature of CREs including presence or absence of CREs, the number of occurrences of each CRE, as well as of their order and location relative to their target genes. Comparative promoter analysis has been shown to be a reliable strategy to test the significance of each component of promoter architecture. However, it remains unclear what level of difference in the number of occurrences of each CRE is of statistical significance in order to explain different expression patterns of two genes. In this study, we present a novel statistical approach for pairwise comparison of promoters of Arabidopsis genes in the context of number of occurrences of each CRE within the promoters. First, using the sample of 1000 Arabidopsis promoters, the results of the goodness of fit test and non-parametric analysis revealed that the number of occurrences of CREs in a promoter sequence is Poisson distributed. As a promoter sequence contained functional and non-functional CREs, we addressed the issue of the statistical distribution of functional CREs by analyzing the ChIP-seq datasets. The results showed that the number of occurrences of functional CREs over the genomic regions was determined as being Poisson distributed. In accordance with the obtained distribution of CREs occurrences, we suggested the Audic and Claverie (AC) test to compare two promoters based on the number of occurrences for the CREs. Superiority of the AC test over Chi-square (2×2) and Fisher's exact tests was also shown, as the AC test was able to detect a higher number of significant CREs. The two case studies on the Arabidopsis genes were performed in order to biologically verify the pairwise test for promoter comparison. Consequently, a number of CREs with significantly different occurrences was identified between the promoters. The results of the pairwise comparative analysis together with the expression data for the studied genes revealed the biological significance of the identified CREs.
    Journal of Theoretical Biology 10/2014; 364. DOI:10.1016/j.jtbi.2014.09.038 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The information that connects genotypes and phenotypes is essentially embedded in research articles written in natural language. To facilitate access to this knowledge, we constructed a framework for the curation of the scientific literature studying the molecular mechanisms that control leaf growth and development in Arabidopsis thaliana (Arabidopsis). Standard structured statements, called relations, were designed to capture diverse data types, including phenotypes and gene expression linked to genotype description, growth conditions, genetic and molecular interactions, and details about molecular entities. Relations were then annotated from the literature, defining the relevant terms according to standard biomedical ontologies. This curation process was supported by a dedicated graphical user interface, called Leaf Knowtator. A total of 283 primary research articles were curated by a community of annotators, yielding 9947 relations monitored for consistency and over 12,500 references to Arabidopsis genes. This information was converted into a relational database (KnownLeaf) and merged with other public Arabidopsis resources relative to transcriptional networks, protein-protein interaction, gene co-expression, and additional molecular annotations. Within KnownLeaf, leaf phenotype data can be searched together with molecular data originating either from this curation initiative or from external public resources. Finally, we built a network (LeafNet) with a portion of the KnownLeaf database content to graphically represent the leaf phenotype relations in a molecular context, offering an intuitive starting point for knowledge mining. Literature curation efforts such as ours provide high quality structured information accessible to computational analysis, and thereby to a wide range of applications.
    02/2015; 39. DOI:10.1016/j.cpb.2014.12.002

Full-text (2 Sources)

Available from
Dec 8, 2014