Article

Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins.

Department of Neuroscience, Eli Lilly and Company, Indianapolis, IN 46285, USA.
Neuron (Impact Factor: 15.98). 12/2010; 68(6):1082-96. DOI: 10.1016/j.neuron.2010.11.026
Source: PubMed

ABSTRACT Transmembrane AMPA receptor regulatory proteins (TARPs) and cornichon proteins (CNIH-2/3) independently modulate AMPA receptor trafficking and gating. However, the potential for interactions of these subunits within an AMPA receptor complex is unknown. Here, we find that TARPs γ-4, γ-7, and γ-8, but not γ-2, γ-3, or γ-5, cause AMPA receptors to "resensitize" upon continued glutamate application. With γ-8, resensitization occurs with all GluA subunit combinations; however, γ-8-containing hippocampal neurons do not display resensitization. In recombinant systems, CNIH-2 abrogates γ-8-mediated resensitization and modifies AMPA receptor pharmacology and gating to match that of hippocampal neurons. In hippocampus, γ-8 and CNIH-2 associate in postsynaptic densities and CNIH-2 protein levels are markedly diminished in γ-8 knockout mice. Manipulating neuronal CNIH-2 levels modulates the electrophysiological properties of extrasynaptic and synaptic γ-8-containing AMPA receptors. Thus, γ-8 and CNIH-2 functionally interact with common hippocampal AMPA receptor complexes to modulate synergistically kinetics and pharmacology.

0 Followers
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ionotropic neurotransmitter receptors mediate fast synaptic transmission by localizing at postsynapses. Changes in receptor number at synapses induce synaptic plasticity. Thus, mechanisms for the synaptic localization of receptors in basal transmission and synaptic plasticity have been investigated extensively. Recent findings reveal that synaptic localization of tetrameric AMPA receptors in basal transmission requires the PDZ binding of TARP auxiliary subunits, which modulate receptor properties and pharmacology. On the other hand, pentameric GABAA receptors require multiple receptor subunits for their synaptic localization in basal transmission. AMPA receptors seem to utilize distinct mechanisms for basal synaptic localization and synaptic insertion during plasticity. Revealing precise mechanisms for receptor synaptic localization may establish new approaches to control synaptic transmission. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Current Opinion in Pharmacology 12/2014; 20C:102-108. DOI:10.1016/j.coph.2014.11.011 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology.
    Frontiers in Cellular Neuroscience 01/2014; 8:469. DOI:10.3389/fncel.2014.00469 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is a major psychiatric disorder affecting more than 120 million people worldwide every year. Changes in monoaminergic transmitter release are suggested to take part in the pathophysiology of depression. However, more recent experimental evidence suggests that glutamatergic mechanisms might play a more central role in the development of this disorder. The importance of the glutamatergic system in depression was particularly highlighted by the discovery that N-methyl-D-aspartate (NMDA) receptor antagonists (particularly ketamine) exert relatively long-lasting antidepressant like effects with rapid onset. Importantly, the antidepressant-like effects of NMDA receptor antagonists, but also other antidepressants (both classical and novel), require activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Additionally, expression of AMPA receptors is altered in patients with depression. Moreover, preclinical evidence supports an important involvement of AMPA receptor-dependent signaling and plasticity in the pathophysiology and treatment of depression. Here we summarize work published on the involvement of AMPA receptors in depression and discuss a possible central role for AMPA receptors in the pathophysiology, course and treatment of depression. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 03/2015; DOI:10.1016/j.neubiorev.2015.03.005 · 10.28 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 20, 2014