Blood-based diagnostics of traumatic brain injuries

Banyan Biomarkers, Inc., 12085 Research Drive, Alachua, FL 32615, USA.
Expert Review of Molecular Diagnostics (Impact Factor: 3.52). 01/2011; 11(1):65-78. DOI: 10.1586/erm.10.104
Source: PubMed


Traumatic brain injury is a major health and socioeconomic problem that affects all societies. However, traditional approaches to the classification of clinical severity are the subject of debate and are being supplemented with structural and functional neuroimaging, as the need for biomarkers that reflect elements of the pathogenetic process is widely recognized. Basic science research and developments in the field of proteomics have greatly advanced our knowledge of the mechanisms involved in damage and have led to the discovery and rapid detection of new biomarkers that were not available previously. However, translating this research for patients' benefits remains a challenge. In this article, we summarize new developments, current knowledge and controversies, focusing on the potential role of these biomarkers as diagnostic, prognostic and monitoring tools of brain-injured patients.

Download full-text


Available from: Kevin KW Wang, Sep 29, 2015
23 Reads
  • Source
    • "The authors also hypothesized pathway links between TBI and synaptic plasticity. In another study, the function of proteins in molecular pathways was exploited to rank order and down-select potential TBI biomarkers from a list of candidates (Mondello et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 02/2015; 93(2). DOI:10.1002/jnr.23503 · 2.59 Impact Factor
  • Source
    • "Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with approximately 2 million reported TBI events in the US annually. The pathogenesis of TBI involves two components: the initial mechanical injury, and subsequent secondary cell death that expands the core lesion [1], [2]. During acute neuronal necrosis, calpains are hyper-activated, while caspases are activated in apoptosis [3],[4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.
    PLoS ONE 03/2014; 9(3):e92698. DOI:10.1371/journal.pone.0092698 · 3.23 Impact Factor
  • Source
    • "Additionally, there is no consensus on the ideal scan method or timing. Therefore, multiple studies have been conducted to identify ideal sensitive, inexpensive, non-invasive biochemical markers that can offer diagnostic and prognostic information, and reflect bTBI pathogenic mechanisms and pathology (116, 117). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
    Frontiers in Neurology 11/2013; 4:186. DOI:10.3389/fneur.2013.00186
Show more