Article

Low O2 dissociation barrier on Pt(111) due to adsorbate-adsorbate interactions.

Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA.
The Journal of Chemical Physics (Impact Factor: 3.12). 12/2010; 133(22):224701. DOI: 10.1063/1.3512618
Source: PubMed

ABSTRACT O(2) dissociation on Pt(111) has been followed at low and saturation coverage using temperature-programmed x-ray photoelectron spectroscopy and simulated with mean-field kinetic modeling, yielding dissociation (E(a)) and desorption (E(d)) barriers of 0.32 and 0.36 eV, respectively. Density functional theory calculations show that E(a) is strongly influenced by the O-O interatomic potential in the atomic final state: of the supercells considered, that which maximizes attractive third-nearest-neighbor interactions in the atomic final state yields both the lowest computed dissociation barrier (0.24 eV) and the best agreement with experiment. It is proposed that the effect of adsorbate-adsorbate interactions must be considered when modeling catalytic processes involving dissociative steps.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Density functional theory calculations are performed on 38 and 79 metal atom truncated octahedron clusters to study oxygen dissociation as a model for the initial stage of the oxygen reduction reaction. Pure platinum and alloyed platinum-titanium core-shell systems are investigated. It is found that barrierless oxygen dissociation occurs on the (111) facet of the pure platinum clusters. A barrier of ∼0.3 eV is observed on the (100) facet. For the alloyed cluster, dissociation barriers are found on both facets, typically ∼0.6 eV. The differences between the two systems are attributed to the ability of oxygen to distort the (111) surface of the pure platinum clusters. We show that flexibility of the platinum shell is crucial in promotion of fast oxygen dissociation. However, the titanium core stabilises the platinum shell upon alloying, resulting in a less easily distortable surface. Therefore, whilst an alloyed platinum-titanium electrocatalyst has certain advantages over the pure platinum electrocatalyst, we suggest alloying with a more weakly interacting metal will be beneficial for facilitating oxygen dissociation.
    Nanoscale 12/2013; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of oxygen with the (111), (110), and (100) platinum crystal surfaces has been modeled by the density functional theory method within the generalized gradient approximation (GGA). It has been demonstrated that the dissociative adsorption of a dioxygen molecule to all three types of surfaces is energetically favorable. The peroxide species are less stable than the dissociated ones, but they are also energetically favorable. There have been considered the relative stability of different structures involving one and several oxygen atoms, the mutual influence of the atoms on the surface, the adsorption energy as a function of the surface coverage, and adsorption onto the intrinsic surface defects.
    Russian Journal of Inorganic Chemistry 08/2012; 57(8). · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O2 at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regime where analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.
    The Journal of chemical physics. 05/2014; 140(19):194704.

Full-text (2 Sources)

Download
76 Downloads
Available from
May 21, 2014