Haplotype-resolved genome sequencing of a Gujarati Indian individual.

Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA.
Nature Biotechnology (Impact Factor: 39.08). 01/2011; 29(1):59-63. DOI: 10.1038/nbt.1740
Source: PubMed

ABSTRACT Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate haplotyping-determining from which parent particular portions of the genome are inherited-is still mostly an unresolved problem in genomics. This problem has only recently started to become tractable, thanks to the development of new long read sequencing technologies. Here, we introduce ProbHap, a haplotyping algorithm targeted at such technologies. The main algorithmic idea of ProbHap is a new dynamic programming algorithm that exactly optimizes a likelihood function specified by a probabilistic graphical model and which generalizes a popular objective called the minimum error correction. In addition to being accurate, ProbHap also provides confidence scores at phased positions.
    Bioinformatics (Oxford, England). 09/2014; 30(17):i379-i385.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality.
    BMC Genomics 06/2014; 15(1):439. · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haplotype information is useful for many genetic analyses and haplotypes are usually inferred using computational approaches. Among such approaches, the importance of single individual haplotyping (SIH), which infers individual haplotypes from sequence fragments, has been increasing with the advent of novel sequencing techniques, such as dilution-based sequencing. These techniques could produce virtual long read fragments by separating DNA fragments into multiple low-concentration aliquots, sequencing and mapping each aliquot, and merging clustered short reads. Although these experimental techniques are sophisticated, they have the problem of producing chimeric fragments whose left and right parts match different chromosomes. In our previous research, we found that chimeric fragments significantly decrease the accuracy of SIH. Although chimeric fragments can be removed by using haplotypes which are determined from pedigree genotypes, pedigree genotypes are generally not available. The length of reads cluster and heterozygous calls were also used to detect chimeric fragments. Although some chimeric fragments will be removed with these features, considerable number of chimeric fragments will be undetected because of the dispersion of the length and the absence of SNPs in the overlapped regions. For these reasons, a general method to detect and remove chimeric fragments is needed.
    BMC Genomics 08/2014; 15(1):733. · 4.04 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014