Article

Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1 alpha function and differentially influences human CD4+ T cell proliferation under hypoxia.

Department of Rheumatology and Clinical Immunology, Charité University Hospital, 10117 Berlin, Germany.
The Journal of Immunology (Impact Factor: 5.52). 01/2011; 186(2):764-74. DOI: 10.4049/jimmunol.0903421
Source: PubMed

ABSTRACT Hypoxia, a feature of inflammation and tumors, is a potent inducer of the proinflammatory cytokine macrophage migration inhibitory factor (MIF). In transformed cells, MIF was shown to modulate and to be modulated via the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1. Furthermore, anti-inflammatory glucocorticoids (GCs) were described to regulate MIF action. However, in-depth studies of the interaction between MIF and HIF-1 and GC action in nontransformed primary human CD4(+) T cells under hypoxia are missing. Therefore, we investigated the functional relationship between MIF and HIF and the impact of the GC dexamethasone (DEX) on these key players of inflammation in human CD4(+) T cells. In this article, we show that hypoxia, and specifically HIF-1, is a potent and rapid inducer of MIF expression in primary human CD4(+) T cells, as well as in Jurkat T cells. MIF signaling via CD74, in turn, is essential for hypoxia-mediated HIF-1α expression and HIF-1 target gene induction involving ERK/mammalian target of rapamycin activity complemented by PI3K activation upon mitogen stimulation. Furthermore, MIF signaling enhances T cell proliferation under normoxia but not hypoxia. MIF also counterregulates DEX-mediated suppression of MIF and HIF-1α expression. Based on these data, we suggest that hypoxia significantly affects the expression of HIF-1α in a MIF-dependent manner leading to a positive-feedback loop in primary human CD4(+) T cells, thus influencing the lymphoproliferative response and DEX action via the GC receptor. Therefore, we suggest that HIF and/or MIF could be useful targets to optimize GC therapy when treating inflammation.

0 Bookmarks
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone cells respond to the integrated effects of local and systemic regulation. Here we show that hypoxia and the stress hormones PGE2 and glucocorticoid interact in complex ways in osteoblasts, converging on insulin like growth factor I (IGF-I) expression. Whereas hypoxia alone rapidly increased transcription factor HIF activity, it suppressed DNA synthesis, had no significant effects on protein synthesis or alkaline phosphatase activity, and drove discrete changes in a panel of osteoblast mRNAs. Notably, hypoxia increased expression of the acute phase response transcription factors C/EBPδ which can induce IGF-I in response to PGE2, but conversely prevented the stimulatory effect of PGE2 on IGF-I mRNA. However, unlike its effect on C/EBPδ, hypoxia suppressed expression of the obligate osteoblast transcription factor Runx2, which can activate an upstream response element in the IGF-I gene promoter. Hypoxic inhibition of IGF-I and Runx2 were enforced by glucocorticoid, and continued with prolonged exposure. Our studies thus reveal that IGF-I expression is stratified by two critical transcriptional elements in osteoblasts, which are resolved by the individual and combined effects of hypoxic stress and stress hormones. In so doing, hypoxia suppresses Runx2, limits the enhancing influence of PGE2, and interacts with glucocorticoid to reduce IGF-I expression by osteoblasts.
    Gene 01/2014; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia and lymphangiogenesis are closely related processes that play a pivotal role in tumor invasion and metastasis. Intratumoral hypoxia is exacerbated as a result of oxygen consumption by rapidly proliferating tumor cells, insufficient blood supply and poor lymph drainage. Hypoxia induces functional responses in lymphatic endothelial cells (LECs), including cell proliferation and migration. Multiple factors (e.g., ET-1, AP-1, C/EBP-δ, EGR-1, NF-κB, and MIF) are involved in the events of hypoxia-induced lymphangiogenesis. Among them, HIF-1α is known to be the master regulator of cellular oxygen homeostasis, mediating transcriptional activation of lymphangiogenesis via regulation of signaling cascades like VEGF-A/-C/-D, TGF-β and Prox-1 in experimental and human tumors. Although the underlying molecular mechanisms remain incompletely elucidated, the investigation of lymphangiogenesis in hypoxic conditions may provide insight into potential therapeutic targets for lymphatic metastasis.
    Cancer letters 12/2013; · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Glucocorticoid functions are markedly impaired in patients with chronic obstructive pulmonary disease (COPD). The phosphodiesterase 4 inhibitor roflumilast N-oxide (RNO) is the active metabolite of roflumilast approved as a treatment to reduce the risk of exacerbations in patients with severe COPD. Objective We sought to characterize the differential effects of RNO versus corticosteroids and their potential additive/synergistic effect in neutrophils from patients with COPD, thus providing scientific rationale for the combination of roflumilast with corticosteroids in the clinic. Methods Peripheral blood neutrophils were isolated from patients with COPD (n = 32), smokers (n = 7), and healthy nonsmokers (n = 25). Levels of IL-8, matrix metallopeptidase 9 (MMP-9), and biomarkers of glucocorticoid resistance were determined by using ELISA and RT-PCR. Neutrophils were incubated with dexamethasone (0.1 nmol/L to 1 μmol/L), RNO (0.1 nmol/L to 1 μmol/L), or the combination of 1 nmol/L RNO plus 10 nmol/L DEX and stimulated with LPS (1 μg/mL) or cigarette smoke extract 5%; levels of IL-8, MMP-9, and other biomarkers were measured at the end of the incubation period. Results Peripheral neutrophils from patients with COPD showed a primed phenotype with an increased basal release of IL-8 and MMP-9 and expressed a corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase δ, macrophage migration inhibitory factor, and glucocorticoid receptor β expression and a decrease in HDAC activity and mitogen-activated protein kinase phosphatase 1 expression. RNO demonstrated robust anti-inflammatory effects on neutrophils from patients with COPD, reversing their resistance to corticosteroids. The combination of RNO and dexamethasone showed additive/synergistic effects, which were consistent with the reversal of corticosteroid-resistant molecular markers by RNO. Conclusion RNO reverses corticosteroid resistance and shows strong anti-inflammatory effects alone or in combination with corticosteroids on neutrophils from patients with COPD.
    The Journal of allergy and clinical immunology 01/2014; · 12.05 Impact Factor

Full-text (2 Sources)

View
33 Downloads
Available from
Jun 4, 2014