Article

Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production.

Department of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, 77843, USA.
Journal of Animal Science (Impact Factor: 1.92). 12/2010; 89(7):2017-30. DOI: 10.2527/jas.2010-3614
Source: PubMed

ABSTRACT L-Glutamine (Gln) has traditionally not been considered a nutrient needed in diets for livestock species or even mentioned in classic animal nutrition textbooks. This is due to previous technical difficulties in Gln analysis and the unsubstantiated assumption that animals can synthesize sufficient amounts of Gln to meet their needs. Consequently, the current (1998) version of NRC does not recommend dietary Gln requirements for swine. This lack of knowledge about Gln nutrition has contributed to suboptimal efficiency of global pig production. Because of recent advances in research, Gln is now known to be an abundant AA in physiological fluids and proteins and a key regulator of gene expression. Additionally, Gln can regulate cell signaling via the mammalian target of rapamycin pathway, adenosine monophosphate-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and nitric oxide. The exquisite integration of Gln-dependent regulatory networks has profound effects on cell proliferation, differentiation, migration, metabolism, homeostasis, survival, and function. As a result of translating basic research into practice, dietary supplementation with 1% Gln maintains gut health and prevents intestinal dysfunction in low-birth-weight or early-weaned piglets while increasing their growth performance and survival. In addition, supplementing 1% Gln to a corn- and soybean-meal-based diet between d 90 and 114 of gestation ameliorates fetal growth retardation in gilts and reduces preweaning mortality of piglets. Furthermore, dietary supplementation with 1% Gln enhances milk production by lactating sows. Thus, adequate amounts of dietary Gln, a major nutrient, are necessary to support the maximum growth, development, and production performance of swine.

0 Bookmarks
 · 
332 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) is a gaseous molecule that regulates angiogenesis and vasodilation via activation of the cGMP pathway. However, functional roles of NO during embryonic development from spherical blastocysts to elongated filamentous conceptuses (embryo and extraembryonic membrane) during the peri-implantation period of pregnancy have not been elucidated in vivo. In order to assess roles of NO production in survival and development of the ovine conceptus, we conducted an in vivo morpholino antisense oligonucleotide (MAO)-mediated knockdown trial of nitric oxide synthase-3 (NOS3) mRNA, the major isoform of NO synthase, in ovine conceptus trophectoderm (Tr). Translational knockdown of NOS3 mRNA results in small, thin, and underdeveloped conceptuses, but normal production of interferon-tau, the pregnancy recognition signal in sheep. MAO-NOS3 knockdown in conceptuses decreased the abundance of NOS3 (72%, P < 0.05) and the arginine transporter SLC7A1 proteins in conceptus Tr. Furthermore, the amounts of ornithine and polyamines were less (P < 0.01) in uterine fluid, whereas the amounts of arginine (58%, P < 0.01), citrulline (68%, P < 0.05), ornithine (68%, P < 0.001), glutamine (78%, P < 0.001), glutamate (68%, P < 0.05), and polyamines (P < 0.01) were less in conceptuses, which likely accounts for the failure of MAO-NOS3 conceptuses to develop normally. For MAO-NOS3 conceptuses, there were no compensatory increases in the expression levels of either nitric oxide synthase-1 (NOS1) or nitric oxide synthase-2 (NOS2) or in expression of enzymes for synthesis of polyamines (ornithine decarboxylase, arginine decarboxylase, agmatinase) from arginine or ornithine with which to rescue development of MAO-NOS3 conceptuses. Thus, the adverse effect of MAO-NOS3 to reduce NO generation and the transport of arginine and ornithine into conceptuses is central to an explanation for failure of normal development of MAO-NOS3, compared to control conceptuses. The study, for the first time, created an NO-deficient mammalian conceptus model in vivo and provided new insights into the orchestrated events of conceptus development during the peri-implantation period of pregnancy. Our data suggest that NOS3 is the key enzyme for NO production by conceptus Tr and that this protein also regulates the availability of arginine in conceptus tissues for synthesis of polyamines that are essential for conceptus survival and development.
    Biology of Reproduction 09/2014; 91(3):59. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.
    Amino Acids 07/2014; · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.
    Amino Acids 07/2014; · 3.65 Impact Factor