Article

Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.

INRA-AgroParis Tech, UMR 782 Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologies Agro-Industrielles, 78850 Thiverval-Grignon, France.
Applied and Environmental Microbiology (Impact Factor: 3.95). 02/2011; 77(4):1449-59. DOI: 10.1128/AEM.01708-10
Source: PubMed

ABSTRACT In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production.

Download full-text

Full-text

Available from: Isabelle Martin-Verstraete, Jun 24, 2015
0 Followers
 · 
218 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic profiles of biofluids obtained by atmospheric pressure ionization mass spectrometry-based technologies contain hundreds to thousands of features, most of them remaining unknown or at least not characterized in analytical systems. We report here on the annotation of the human adult urinary metabolome and metabolite identification from electrospray ionization mass spectrometry (ESI-MS)-based metabolomics data sets. Features of biological interest were first of all annotated using the ESI-MS database of the laboratory. They were also grouped, thanks to software tools, and annotated using public databases. Metabolite identification was achieved using two complementary approaches: (i) formal identification by matching chromatographic retention times, mass spectra, and also product ion spectra (if required) of metabolites to be characterized in biological data sets to those of reference compounds and (ii) putative identification from biological data thanks to MS/MS experiments for metabolites not available in our chemical library. By these means, 384 metabolites corresponding to 1484 annotated features (659 in negative ion mode and 825 in positive ion mode) were characterized in human urine samples. Of these metabolites, 192 and 66 were formally and putatively identified, respectively, and 54 are reported in human urine for the first time. These lists of features could be used by other laboratories to annotate their ESI-MS metabolomics data sets.
    Analytical Chemistry 07/2012; 84(15):6429-37. DOI:10.1021/ac300829f · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For studying the microbiota of four Danish surface-ripened cheeses produced at three farmhouses and one industrial dairy, both a culture-dependent and culture-independent approach were used. After dereplication of the initial set of 433 isolates by (GTG)5-PCR fingerprinting, 217 bacterial and 25 yeast isolates were identified by sequencing of the 16S rRNA gene or the D1/D2 domain of the 26S rRNA gene, respectively. At the end of ripening, the cheese core microbiota of the farmhouse cheeses consisted of the mesophilic lactic acid bacteria (LAB) starter cultures Lactococcus lactis subsp. lactis and Leuconostoc mesenteorides as well as non-starter LAB including different Lactobacillus spp. The cheese from the industrial dairy was almost exclusively dominated by Lb. paracasei. The surface bacterial microbiota of all four cheeses were dominated by Corynebacterium spp. and/or Brachybacterium spp. Brevibacterium spp. was found to be subdominant compared to other bacteria on the farmhouse cheeses, and no Brevibacterium spp. was found on the cheese from the industrial dairy, even though B. linens was used as surface-ripening culture. Moreover, Gram-negative bacteria identified as Alcalignes faecalis and Proteus vulgaris were found on one of the farmhouse cheeses. The surface yeast microbiota consisted primarily of one dominating species for each cheese. For the farmhouse cheeses, the dominant yeast species were Yarrowia lipolytica, Geotrichum spp. and Debaryomyces hansenii, respectively, and for the cheese from the industrial dairy, D. hansenii was the dominant yeast species. Additionally, denaturing gradient gel electrophoresis (DGGE) analysis revealed that Streptococcus thermophilus was present in the farmhouse raw milk cheese analysed in this study. Furthermore, DGGE bands corresponding to Vagococcus carniphilus, Psychrobacter spp. and Lb. curvatus on the cheese surfaces indicated that these bacterial species may play a role in cheese ripening.
    Microbial Ecology 12/2012; 65(3). DOI:10.1007/s00248-012-0138-3 · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Escherichia coli inner membrane protein CysZ mediates the sulfate uptake subsequently utilized for the synthesis of sulfur-containing compounds in cells. Here we report the purification and functional characterization of CysZ. Using Isothermal Titration Calorimetry, we have observed interactions between CysZ and its putative substrate sulfate. Additional sulfur-containing compounds from the cysteine synthesis pathway have also been analyzed for their abilities to interact with CysZ. Our results suggest that CysZ is dedicated to a specific pathway that assimilates sulfate for the synthesis of cysteine. Sulfate uptake via CysZ into E. coli whole cells and proteoliposome offer direct evidence of CysZ being able to mediate sulfate uptake. In addition, the cysteine synthesis pathway intermediate sulfite can interact directly with CysZ with higher affinity than sulfate. The sulfate transport activity is inhibited at the presence of sulfite, suggesting the existence of a feedback inhibition mechanism in which sulfite regulates sulfate uptake by CysZ. Sulfate uptake assays performed at different extracellular pH and at the presence of a proton uncoupler indicate that this uptake is driven by the proton gradient.
    Biochimica et Biophysica Acta 03/2014; 1838(7). DOI:10.1016/j.bbamem.2014.03.003 · 4.66 Impact Factor