Article

Discovery and structural characterization of fucosylated oligomannosidic N-glycans in mushrooms.

Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
Journal of Biological Chemistry (Impact Factor: 4.65). 02/2011; 286(8):5977-84. DOI: 10.1074/jbc.M110.191304
Source: PubMed

ABSTRACT L-fucose is a common constituent of Asn-linked glycans in vertebrates, invertebrates, and plants, but in fungal glycoproteins, fucose has not been found so far. However, by mass spectrometry we detected N-glycans and O-glycans containing one to six deoxyhexose residues in fruit bodies of several basidiomycetes. The N-glycans of chanterelles (Cantharellus cibarius) contained a deoxyhexose chromatographically identical to fucose and sensitive to α-L-fucosidase. Analysis of individual glycan species by tandem MS, glycosidase digestion, and finally (1)H NMR revealed the presence of L-fucose in α1,6-linkage to an α1,6-mannose of oligomannosidic N-glycans. The substitution by α1,6-mannose of α1,2-mannosyl residues of the canonical precursor structure was yet another hitherto unknown modification. No indication for the occurrence of yet other modifications, e.g. bisecting N-acetylglucosamine, was seen. Besides fucosylated N-glycans, short O-linked mannan chains substituted with fucose were present on chanterelle proteins. Although undiscovered so far, L-fucose appears to represent a prominent feature of protein-linked glycans in the fungal kingdom.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellulosic biomass is an abundant and promising energy source. To make cellulosic biofuels competitive against conventional fuels, conversion of rigid plant materials into sugars must become efficient and cost-effective. During cellulose degradation, cellulolytic enzymes generate cellobiose (β-(1→4)-glucose dimer) molecules, which in turn inhibit such enzymes by negative feedback. β-Glucosidases (BGLs) cleave cellobiose into glucose monomers, assisting overall cellulolytic activities. Therefore, BGLs are essential for efficient conversion of cellulosic biomass into biofuels, and it is important to characterize newly isolated BGLs for useful traits. Here, we report our discovery that the indigenous Taiwanese fungus Chaetomella raphigera strain D2 produces two molecular weight variants of a single BGL, D2-BGL (shortened to "D2"), which differ in O-glycosylation. The more extensively O-glycosylated form of native D2 (nD2L) has increased activity toward the natural substrate, cellobiose, compared to the less O-glycosylated form (nD2S). nD2L is more stable at 60°C, in acidic pH, and in the presence of the ionic detergent sodium dodecyl sulfate than nD2S. Furthermore, unlike nD2S, nD2L does not display substrate inhibition by an artificial substrate p-nitrophenyl glucopyranoside (pNPG), and the glucose feedback inhibition kinetics of nD2L is competitive (while it is non-competitive for nD2S), suggesting that these two glycovariants of D2 bind substrates differently. Interestingly, D2 produced in a heterologous system, Pichia pastoris, closely mimics properties of nD2S. Our studies suggest that O-glycosylation of D2 is important in determining its catalytic and biochemical properties.
    PLoS ONE 01/2014; 9(9):e106306. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection.
    International Journal of Microbiology 01/2014; 2014:267497.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS) organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodeling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.
    Frontiers in Plant Science 01/2014; 5:359. · 3.60 Impact Factor