Article

Potocki-Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
The Journal of pediatrics (Impact Factor: 4.02). 12/2010; 158(4):655-659.e2. DOI: 10.1016/j.jpeds.2010.09.062
Source: PubMed

ABSTRACT Failure to thrive (FTT) is a feature of children with Potocki-Lupski syndrome (PTLS) [duplication 17p11.2]. This study was designed to describe the growth characteristics of 24 subjects with PTLS from birth through age 5 years in conjunction with relevant physical features and swallow function studies.
We evaluated 24 individuals with PTLS who were ascertained by chromosome analysis and/or array comparative genome hybridization. Clinical assessments included review of medical records, physical examination, otolaryngological examination, and swallow function studies. Measures of height and weight were converted to Z-scores.
The mean weight-for-age and weight-for-length Z-scores at birth were lower (P < .01) than the reference standard and did not change with age. A history of poor feeding, hypotonia, and FTT were reported in 92%, 88%, and 71%, respectively. Individuals with hypotonia had lower weight-for-age and body mass index-for-age Z-scores (P = .01). Swallow function studies demonstrated at least one abnormality in all subjects.
FTT is common in children with PTLS. We hypothesize that oropharyngeal dysphagia and hypotonia likely contribute to FTT in patients with PTLS and recommend that once a diagnosis is established, the individual be assessed for feeding and growth issues and be availed of oromotor therapy and nutritional services.

0 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
    Cellular and Molecular Life Sciences CMLS 08/2013; 71(8). · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variants (CNVs) represent a frequent type of lesion in human genetic disorders that typically affects numerous genes simultaneously. This has raised the challenge of understanding which genes within a CNV drive clinical phenotypes. Although CNVs can arise by multiple mechanisms, a subset is driven by local genomic architecture permissive to recombination events that can lead to both deletions and duplications. Phenotypic analyses of patients with such reciprocal CNVs have revealed instances in which the phenotype is either identical or mirrored; strikingly, molecular studies have shown that such phenotypes are often driven by reciprocal dosage defects of the same transcript. Here we explore how these observations can help the dissection of CNVs and inform the genetic architecture of CNV-induced disorders.
    Current opinion in genetics & development 06/2013; · 8.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Potocki-Lupski syndrome (PTLS, OMIM: 610883) is a microduplication syndrome characterized by infantile hypotonia, failure to thrive, cardiovascular malformations, developmental delay, intellectual disability, and behavior abnormalities, the latter of which can include autism spectrum disorder. The majority of individuals with PTLS harbor a de novo microduplication of chromosome 17p11.2 reciprocal to the common recurrent 3.6 Mb microdeletion in the Smith-Magenis syndrome critical region. Here, we report on the transmission of the PTLS duplication across two generations in two separate families. Individuals in these families presented initially with developmental delay, behavior problems, and intellectual disability. We provide a detailed review of the clinical and developmental phenotype of inherited PTLS in both families. This represents the second report (second and third families) of PTLS in a parent-child pair and exemplifies the under-diagnosis of this and likely other genetic conditions in adults with intellectual disability and/or psychiatric disorders. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 12/2013; 164(2). · 2.30 Impact Factor

Full-text (2 Sources)

Download
49 Downloads
Available from
May 31, 2014