Determining the association of medical co-morbidity with subjective and objective cognitive performance in an inner city memory disorders clinic: a retrospective chart review.

Department of Psychiatry, St Michael's Hospital, Toronto, Ontario, Canada.
BMC Geriatrics (Impact Factor: 2.34). 01/2010; 10:89. DOI: 10.1186/1471-2318-10-89
Source: PubMed

ABSTRACT Medical co-morbidity may be associated with impaired cognitive function based on prior studies. However, no studies to date have determined to what extent this association is linked to medical illness or other factors that may be linked to medical illness (such as education, income levels, depression or subjective memory loss). The present study examined how medical co-morbidity, socioeconomic status (defined as residential SES), education and depression are associated with subjective and objective memory function in a sample of patients recruited from a university affiliated Memory Disorders Clinic located in a large Canadian inner city teaching hospital.
Data was collected from 85 consecutive referrals to an Inner City Memory Disorders Clinic including socio-demographic characteristics, cognitive status and medical co-morbidity. Descriptive and correlational analyses were conducted.
Impaired objective cognitive function correlated significantly with increased medical co-morbidity and partially with education but not with residential SES or depression. Elevated memory complaints correlated significantly with depression, inversely with residential SES and not at all with medical co-morbidity or education.
Increased medical co-morbidity is significantly associated with impaired cognitive performance but not with subjective memory complaints in an Inner City Memory Clinic sample.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Late onset Alzheimer’s disease (AD) is the most common cause of progressive cognitive dysfunction and dementia. Despite considerable progress in elucidating the molecular pathology of this disease, we are not yet close to unraveling its etiopathogenesis. The hippocampus is at the epicenter of cognition being associated with learning and memory. A battery of neurotoxic modifiers has been delineated that may unleash deleterious heterogeneous pathologic impacts. Synergistically they target hippocampus causing its neuronal degeneration, gray matter volume atrophy, and progressive cognitive decline. The neurotoxic factors include aging, stress, depression, hypoxia/hypoxemia, hypertension, diabetes, obesity, alcohol abuse, smoking, malnutrition, and polypharmacy—to name a few. Addressing “upstream pathologies” due to these multiple and heterogeneous neurotoxic modifiers vis-a-vis hippocampal dysfunction is of paramount importance. The downstream-generated inflammatory cytokines, mitochondrial dysfunction, oxidative stress, hypoperfusion, excitotoxicity, amyloid beta, and neurofibrillary tangles may then trigger and sustain neurocognitive pathology. The failure of clinical trials in AD is due in part to this complex multifactorial neurotoxic–pathophysiological labyrinth. The key is to employ appropriate preventive and treatment strategies prior to significant hippocampus damage and its dysfunction. Prevention/reversal of the diverse neurotoxic impacts, delineated here, should be an integral part of therapeutic armamentarium, in order to ameliorate hippocampus dysfunction and to enhance memory in aging, mild cognitive impairment, and AD. Throughout, the paper highlights both the challenges presented by the ever present neurotoxic onslaught, and the opportunities to overcome them. Hence, arresting AD pathogenesis is achievable through early intervention. A targeted approach may ameliorate neurocognitive pathology and attenuate memory deterioration.
    Neurotoxicity Research 07/2013; · 2.87 Impact Factor

Full-text (3 Sources)

Available from
May 16, 2014