Article

Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers.

National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
Blood (Impact Factor: 9.78). 02/2011; 117(5):1550-4. DOI: 10.1182/blood-2009-03-212803
Source: PubMed

ABSTRACT Various combinations of antibodies directed to cell surface markers have been used to isolate human and rhesus macaque hematopoietic stem cells (HSCs). These protocols result in poor enrichment or require multiple complex steps. Recently, a simple phenotype for HSCs based on cell surface markers from the signaling lymphocyte activation molecule (SLAM) family of receptors has been reported in the mouse. We examined the possibility of using the SLAM markers to facilitate the isolation of highly enriched populations of HSCs in humans and rhesus macaques. We isolated SLAM (CD150(+)CD48(-)) and non-SLAM (not CD150(+)CD48(-)) cells from human umbilical cord blood CD34(+) cells as well as from human and rhesus macaque mobilized peripheral blood CD34(+) cells and compared their ability to form colonies in vitro and reconstitute immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 γc receptor(null), NSG) mice. We found that the CD34(+) SLAM population contributed equally or less to colony formation in vitro and to long-term reconstitution in NSG mice compared with the CD34(+) non-SLAM population. Thus, SLAM family markers do not permit the same degree of HSC enrichment in humans and rhesus macaques as in mice.

1 Follower
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: B lymphocytes differentiate from hematopoietic stem cells through a series of distinct stages. Early B cell development proceeds in bone marrow until immature B cells migrate out to secondary lymphoid tissues, such as a spleen and lymph nodes, after completion of immunoglobulin heavy and light chain rearrangement. Although the information about the regulation by numerous factors, including signaling molecules, transcription factors, epigenetic changes and the microenvironment, could provide the clinical application, our knowledge on human B lymphopoiesis is limited. However, with great methodological advances, significant progress for understanding B lymphopoiesis both in human and mouse has been made. In this review, we summarize the experimental models for studies about human adult B lymphopoiesis, and the role of microenvironment and signaling molecules, such as cytokines, transforming growth factor-β superfamily, Wnt family and Notch family, with point-by-point comparison between human and mouse.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eph receptor (Eph)–ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4-ephrinB2 regulates cardiovascular development. To assess the role of EphB4-ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporters in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5+ cardiac progenitor cells and in α-MHC+ cardiomyocytes, respectively. We found that both EphB4 and ephrinB2 were expressed in Nkx2.5-GFP+ cardiac progenitor cells, but not in α-MHC-GFP+ cardiomyocytes during cardiac lineage differentiation of ES cells. An antagonist of EphB4, TNYL-RAW peptides, that block the binding of EphB4 and ephrinB2, impaired cardiac lineage development in ES cells. Inhibition of EphB4-ephrinB2 signaling at different time points during ES cell differentiation demonstrated that the interaction of EphB4 and ephrinB2 was required for the early stage of cardiac lineage development. Forced expression of human full-length EphB4 or intracellular domain-truncated EphB4 in EphB4-null ES cells was established to investigate the role of EphB4-forward signaling in ES cells. Interestingly, while fulllength EphB4 were able to restore the cardiac lineage development in EphB4-null ES cells, the truncated EphB4 that lack the intracellular domain of tyrosine kinase and PDZ motif failed to rescue the defect of cardiomyocyte development, suggesting that EphB4 intracellular domain is essential for the development of cardiomyocytes. Our study provides evidence that receptor-kinase-dependent EphB4-forward signaling plays a crucial role in the development of cardiac progenitor cells. J. Cell. Biochem. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 10/2014; DOI:10.1002/jcb.25000 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoiesis in vertebrates is sustained over the duration of an organism's lifetime due to strict regulation of the highly hierarchical hematopoietic system, where a few immature hematopoietic stem cells continuously regenerate the entire blood supply, which is constantly being replaced. While HSCs self-regulate through cell-autonomous processes, they also receive a variety of signals from their microenvironment or niche. Within the microenvironment, HSCs are regulated through both cell-cell interactions and secreted signals, including hormones. HSCs at the apex of the blood supply integrate these signals in order produce progeny to support hematopoiesis, while simultaneously maintaining a stem cell pool. In the past 10 years advances in genetic models and flow cytometry have provided the tools to test how the microenvironment regulates HSCs. This review is organized in three main parts and will focus on cellular components of the HSC niche which are potential targets for hormonal signals, then review critical regulatory signals in the HSC niche and finally highlight the emerging role of hormonal and paracrine signals in the bone marrow.
    Molecular Endocrinology 08/2014; DOI:10.1210/me.2014-1079 · 4.20 Impact Factor