The effect of TNFα on food intake and central insulin sensitivity in rats.

Program in Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
Physiology & Behavior (Impact Factor: 3.03). 04/2011; 103(1):17-20. DOI: 10.1016/j.physbeh.2010.11.037
Source: PubMed

ABSTRACT Circulating and tissue levels of the proinflammatory cytokine tumor necrosis factor α (TNFα) are elevated in obesity. TNFα interferes with insulin signaling in many tissues and also plays a causal role in the anorexia that accompanies severe challenges to the immune system. The interactions between TNFα and insulin in the control of eating are less well known. The present study evaluated the role of TNFα in the central nervous system control of food intake by insulin in adult male Long Evans rats. We first determined the ability of several doses of TNFα injected into the 3rd cerebral ventricle (i3vt) to reduce food intake in male rats. Subsequently, we assessed the ability of a subthreshold dose of TNFα to modulate the effect of i3vt insulin on food intake in male rats fed a low-fat chow or a high-fat (HF) diet. TNFα administered i3vt dose-dependently reduced food intake in rats fed a standard low-fat chow diet. Moreover, a low, sub-threshold dose of TNFα diminished the reduction in food intake by insulin in rats maintained on a chow diet, but enhanced insulin action in rats maintained on a HF diet. These data suggest that the interaction of TNFα with central insulin varies with nutritional and/or dietary conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many questions must be considered with regard to consuming food, including when to eat, what to eat and how much to eat. Although eating is often thought to be a homeostatic behaviour, little evidence exists to suggest that eating is an automatic response to an acute shortage of energy. Instead, food intake can be considered as an integrated response over a prolonged period of time that maintains the levels of energy stored in adipocytes. When we eat is generally determined by habit, convenience or opportunity rather than need, and meals are preceded by a neurally-controlled coordinated secretion of numerous hormones that prime the digestive system for the anticipated caloric load. How much we eat is determined by satiation hormones that are secreted in response to ingested nutrients, and these signals are in turn modified by adiposity hormones that indicate the fat content of the body. In addition, many nonhomeostatic factors, including stress, learning, palatability and social influences, interact with other controllers of food intake. If a choice of food is available, what we eat is based on pleasure and past experience. This article reviews the hormones that mediate and influence these processes.
    Nature Reviews Endocrinology 07/2013; DOI:10.1038/nrendo.2013.136 · 12.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is associated with increased levels of angiotensin-II (Ang-II), which activates angiotensin type 1a receptors (AT1a) to influence cardiovascular function and energy homeostasis. To test the hypothesis that specific AT1a within the brain control these processes, we used the Cre/lox system to delete AT1a from the paraventricular nucleus of the hypothalamus (PVN) of mice. PVN AT1a deletion did not affect body mass or adiposity when mice were maintained on standard chow. However, maintenance on a high-fat diet revealed a gene by environment interaction whereby mice lacking AT1a in the PVN had increased food intake and decreased energy expenditure that augmented body mass and adiposity relative to controls. Despite this increased adiposity, PVN AT1a deletion reduced systolic blood pressure, suggesting that this receptor population mediates the positive correlation between adiposity and blood pressure. Gene expression studies revealed that PVN AT1a deletion decreased hypothalamic expression of corticotrophin-releasing hormone and oxytocin, neuropeptides known to control food intake and sympathetic nervous system activity. Whole-cell patch-clamp recordings confirmed that PVN AT1a deletion eliminates responsiveness of PVN parvocellular neurons to Ang-II, and suggest that Ang-II responsiveness is increased in obese wild-type mice. Central inflammation is associated with metabolic and cardiovascular disorders and PVN AT1a deletion reduced indices of hypothalamic inflammation. Collectively, these studies demonstrate that PVN AT1a regulate energy balance during environmental challenges that promote metabolic and cardiovascular pathologies. The implication is that the elevated Ang-II that accompanies obesity serves as a negative feedback signal that activates PVN neurons to alleviate weight gain.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2013; 33(11):4825-33. DOI:10.1523/JNEUROSCI.3806-12.2013 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY3-36, produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
    Nutrition Research Reviews 12/2012; 25(2):223-48. DOI:10.1017/S0954422412000145 · 3.86 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014