Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces.

Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany .
Neural Computation (Impact Factor: 1.76). 12/2010; DOI: 10.1162/NECO_a_00089
Source: PubMed

ABSTRACT Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a nonnegligible portion of participants (estimated 15%--30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we therefore investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user initially starting from a subject-independent classifier operating on simple features to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features' drift during the session and provide an unbiased measure of BCI performance. Using this approach, without any offline calibration measurement, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective learning and recovery of relevant source brain activity patterns is a major challenge to brain-computer interface using scalp EEG. Various spatial filtering solutions have been developed. Most current methods estimate an instantaneous demixing with the assumption of uncorrelatedness of the source signals. However, recent evidence in neuroscience suggests that multiple brain regions cooperate, especially during motor imagery, a major modality of brain activity for brain-computer interface. In this sense, methods that assume uncorrelatedness of the sources become inaccurate. Therefore, we are promoting a new methodology that considers both volume conduction effect and signal propagation between multiple brain regions. Specifically, we propose a novel discriminative algorithm for joint learning of propagation and spatial pattern with an iterative optimization solution. To validate the new methodology, we conduct experiments involving 16 healthy subjects and perform numerical analysis of the proposed algorithm for EEG classification in motor imagery brain-computer interface. Results from extensive analysis validate the effectiveness of the new methodology with high statistical significance.
    Neural Computation 07/2013; · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major challenge in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is the inherent nonstationarities in the EEG data. Variations of the signal properties from intra and inter sessions often lead to deteriorated BCI performances, as features extracted by methods such as common spatial patterns (CSP) are not invariant against the changes. To extract features that are robust and invariant, this paper proposes a novel spatial filtering algorithm called Kullback-Leibler (KL) CSP. The CSP algorithm only considers the discrimination between the means of the classes, but does not consider within-class scatters information. In contrast, the proposed KLCSP algorithm simultaneously maximizes the discrimination between the class means, and minimizes the within-class dissimilarities measured by a loss function based on the KL divergence. The performance of the proposed KLCSP algorithm is compared against two existing algorithms, CSP and stationary CSP (sCSP), using the publicly available BCI competition III dataset IVa and a large dataset from stroke patients performing neuro-rehabilitation. The results show that the proposed KLCSP algorithm significantly outperforms both the CSP and the sCSP algorithms, in terms of classification accuracy, by reducing within-class variations. This results in more compact and separable features.
    IEEE transactions on neural networks and learning systems 01/2013; 24(4):610-619. · 4.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.
    PLoS ONE 01/2014; 9(1):e87253. · 3.53 Impact Factor