Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces.

Machine Learning Department, Berlin Institute of Technology, Berlin 10587, Germany .
Neural Computation (Impact Factor: 1.76). 12/2010; DOI: 10.1162/NECO_a_00089
Source: PubMed

ABSTRACT Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a nonnegligible portion of participants (estimated 15%--30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we therefore investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user initially starting from a subject-independent classifier operating on simple features to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features' drift during the session and provide an unbiased measure of BCI performance. Using this approach, without any offline calibration measurement, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bünau, Blankertz, and Müller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
    Neural Computation 03/2014; · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder's neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.
    PLoS ONE 01/2014; 9(1):e87253. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI) has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO) and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects) or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.
    PLoS ONE 01/2014; 9(2):e87056. · 3.73 Impact Factor