Identification of a FUS splicing mutation in a large family with amyotrophic lateral sclerosis.

Center of Excellence in Neuromics of Université de Montréal, CHUM Research Center, Montreal, Quebec, Canada.
Journal of Human Genetics (Impact Factor: 2.53). 12/2010; 56(3):247-9. DOI: 10.1038/jhg.2010.162
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Genetic studies have led, thus far, to the identification of 12 loci and 9 genes for familial ALS (FALS). Although the distribution and impact of superoxide dismutase 1 mutations has been extensively examined for over a decade, the recently identified FALS-associated FUS gene has been less studied. Therefore, we set out to screen our collection of FALS cases for FUS mutations. All 15 exons of FUS were amplified and sequenced in 154 unrelated FALS cases and 475 ethnically matched healthy individuals. One substitution located in the acceptor splice site of intron 14 was identified in all affected members of a large family, causing the skipping of the last 13 amino acids of the protein and the translation of 7 novel amino acids, resulting from the new translation of a part of the 3' untranslated region. Our study identified a new splicing mutation in the highly conserved C-terminal of the FUS protein. Thus far most FUS mutations are missenses, and our findings, combined with those of others, confirm the importance of the C-terminal portion of the protein, adding additional support for FUS mutations having a critical role in ALS.


Available from: Hussein Daoud, Apr 08, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: A familial behavioral variant frontotemporal dementia associated with astrocyte-predominant tauopathy is described in 2 sisters born from consanguineous parents. The neuropathologic examination revealed massive accumulation of abnormally hyperphosphorylated, conformational, truncated tau at aspartic acid 421, ubiquitinated and nitrated tau at Tyr29 in cortical astrocyte (including their perivascular foot processes), and Bergmann glia. Smaller amounts of abnormal tau were observed in neurons and rarely in oligodendrocytes. There was decreased expression of glial glutamate transporter in the majority of tau-positive astrocytes. Gel electrophoresis of sarkosyl-insoluble fractions showed 2 bands of 64 and 60 kDa and a doublet of 67 to 70 kDa (which are different from those seen in Alzheimer disease and in typical 4R and 3R tauopathies) together with several bands of lower molecular weight indicative of truncated tau. Analysis of the expression of MAPT isoforms further revealed altered splicing and representation of tau isoforms involving exons 2, 3, and 10. Genetic testing revealed no known mutations in PSEN1, PSEN2, APP, MAPT, GRN, FUS, and TARDBP and no pathologic expansion in C9ORF72. However, a novel rare heterozygous sequence variant (p.Q140H) of uncertain significance was identified in FUS in both siblings.
    Journal of Neuropathology and Experimental Neurology 03/2015; 74(4). DOI:10.1097/NEN.0000000000000180 · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in Sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here has been submitted to a database based on the Leiden Open (source) Variation Database(LOVD) and is accessible online at,
    Human Mutation 06/2013; 34(6). DOI:10.1002/humu.22319 · 5.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in C9ORF72, SOD1, TARDBP, and FUS genes account for approximately two-third of familial cases and 5% of sporadic amyotrophic lateral sclerosis (ALS) cases. We present the first case of an ALS patient carrying a de novo nonsense mutation in exon 14 of the FUS gene (c.1483c>t; p.R495X) with an apparently familial ALS. This mutation causes a phenotype characterized by a young age at onset, a rapid course (<24 months), and a bulbar onset with early respiratory involvement with a predominant lower motor neuron disease. De novo mutations could account for a sizable number of apparently sporadic ALS patients carrying mutations of ALS-related genes.
    Neurobiology of aging 12/2013; 35(6). DOI:10.1016/j.neurobiolaging.2013.12.028 · 4.85 Impact Factor