Reimagining Alzheimer's Disease-An Age-Based Hypothesis

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 12/2010; 30(50):16755-62. DOI: 10.1523/JNEUROSCI.4521-10.2010
Source: PubMed


The historical roots of Alzheimer's disease provide a sound conceptual basis for linking the behavioral and neurological symptoms of the disease with the frequently associated pathology of amyloid plaques and neurofibrillary tangles. Out of these roots has grown the "amyloid cascade hypothesis"--a vision of the etiology of Alzheimer's that has spurred the discovery of many important insights into the neurobiology of the disease. Despite these successes, the wealth of new data now available to biomedical researchers urges a full review of the origins of Alzheimer's, and such a reconsideration is offered here. It begins with the most widely accepted risk factor for developing Alzheimer's disease: age. Then, for an individual to progress from normal age-appropriate cognitive function to a condition where the full palette of clinical symptoms is expressed, three key steps are envisioned: (1) an initiating injury, (2) a chronic neuroinflammatory response, and (3) a discontinuous cellular change of state involving most, if not all, of the cell types of the brain. The amyloid cascade is integrated into this sequence, but reconfigured as an amyloid deposition cycle. In this way, the pathology of amyloid plaques is envisioned as highly correlated with, but mechanistically distinct from, the three obligatory steps leading to Alzheimer's disease. The implications of this new model are discussed with respect to our current diagnostic criteria, and suggestions are put forward for expanding our future research efforts.

Download full-text


Available from: Karl Herrup, Sep 17, 2014
  • Source
    • "In fact, mild stimulatory events or minor injuries, otherwise innocuous, could induce a robust and potentially damaging response. Thus, a stimulus that normally would trigger a protective response, in presence of age-related impairment of regulation could determine a persistent activation, associated, for example, to oxidative stress (von Bernhardi, 2007; Herrup, 2010). Similarly, aged microglia become more inflammatory than their younger counterparts upon systemic inflammatory stimulation, exacerbating damage (Combrinck et al., 2002; Cunningham et al., 2005; Godbout et al., 2005; Sierra et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the main risk factor for Alzheimer's disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
    Frontiers in Cellular Neuroscience 10/2015; 9. DOI:10.3389/fncel.2015.00426 · 4.29 Impact Factor
  • Source
    • "Tau proteins when hyperphosphorylated can form NFT that in turn impair intra-neuronal communication [7] and lead directly to cell death [5]. Although the amyloid cascade hypothesis is strongly supported, particularly in the familial forms of the disease that account for less than 5 per cent of all cases, increasing evidence suggests that the evolution/causes of the sporadic forms of the disease are different from the familial ones [8]. Indeed, another important feature of AD's pathology is the presence of a chronic inflammatory component. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging can lead to decline in cognition, notably due to neurodegenerative processes overwhelming the brain over time. As people live longer, numerous concerns are rightfully raised toward long-term slowly incapacitating diseases with no cure, such as Alzheimer's disease. Since the early 2000's, the role of neuroinflammation has been scrutinized for its potential role in the development of diverse neurodegenerative diseases notably because of its slow onset and chronic nature in aging. Despite the lack of success yet, treatment of chronic neuroinflammation could help alleviate process implicated in neurodegenerative disease. A growing number of studies including our own have aimed at the endocannabinoid system and unfolded unique effects of this system on neuroinflammation, neurogenesis and hallmarks of Alzheimer's disease and made it a reasonable target in the context of normal and pathological brain aging.
    Aging and Disease 10/2015; 6(5):400-5. DOI:10.14336/AD.2015.0617 · 3.07 Impact Factor
  • Source
    • "Age - dependent changes gradually have a toll on brain homeostasis and function ( Herrup , 2010 ; von Bernhardi et al . , 2010 ) , changing glial cell reactivity ( von Bernhardi , 2007 ) . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the promotion of neurodegeneration.
    Frontiers in Aging Neuroscience 08/2015; 7:124. DOI:10.3389/fnagi.2015.00124 · 4.00 Impact Factor
Show more