Article

Production of hepatitis C virus lacking the envelope-encoding genes for single-cycle infection by providing homologous envelope proteins or vesicular stomatitis virus glycoproteins in trans.

Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200025, China.
Journal of Virology (Impact Factor: 5.08). 03/2011; 85(5):2138-47. DOI: 10.1128/JVI.02313-10
Source: PubMed

ABSTRACT Hepatitis C virus (HCV) infection is a major worldwide health problem. The envelope glycoproteins are the major components of viral particles. Here we developed a trans-complementation system that allows the production of infectious HCV particles in whose genome the regions encoding envelope proteins are deleted (HCVΔE). The lack of envelope proteins could be efficiently complemented by the expression of homologous envelope proteins in trans. HCVΔE production could be enhanced significantly by previously described adaptive mutations in NS3 and NS5A. Moreover, HCVΔE could be propagated and passaged in packaging cells stably expressing HCV envelope proteins, resulting in only single-round infection in wild-type cells. Interestingly, we found that vesicular stomatitis virus (VSV) glycoproteins could efficiently rescue the production of HCV lacking endogenous envelope proteins, which no longer required apolipoprotein E for virus production. VSV glycoprotein-mediated viral entry could allow for the bypass of the natural HCV entry process and the delivery of HCV replicon RNA into HCV receptor-deficient cells. Our development provides a new tool for the production of single-cycle infectious HCV particles, which should be useful for studying individual steps of the HCV life cycle and may also provide a new strategy for HCV vaccine development.

0 Bookmarks
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
    Viruses 01/2014; 6(3):1149-87. · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complementation is a naturally occurring genetic mechanism that has been studied for a number of plus-strand RNA viruses. Although trans-complementation is well documented for Flaviviridae family viruses, the first such system for hepatitis C virus (HCV) was only described in 2005. Since then, the development of a number of HCV trans-complementation models has improved our knowledge of HCV protein functions and interactions, genome replication and viral particle assembly. These models have also been used to produce defective viruses and so improvements are necessary for vaccine assays. This review provides an update on HCV trans-complementation systems, the viral mechanisms studied therewith and the production and characterization of trans-encapsidated particles.
    Journal of Viral Hepatitis 04/2013; 20(4):225-233. · 3.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A trans-packaging system for hepatitis C virus (HCV) replicons lacking envelope glycoproteins was developed. The replicons were efficiently encapsidated into infectious particles after expression in trans of homologous HCV envelope proteins under the control of an adenoviral vector. Interestingly, expression in trans of core or core, p7 and NS2 with envelope proteins did not enhance trans-encapsidation. Expression of heterologous envelope proteins, in the presence or absence of heterologous core, p7 and NS2, did not rescue single-round infectious particle production. To increase the titre of homologous, single-round infectious particles in our system, successive cycles of trans-encapsidation and infection were performed. Four cycles resulted in a hundred-fold increase in the yield of particles. Sequence analysis revealed a total of 16 potential adaptive mutations in two independent experiments. Except for a core mutation in one experiment, all the mutations were located in non-structural regions mainly in NS5A (four in domain III and two near the junction with the NS5B gene). Reverse genetics studies suggested that D2437A and S2443T adaptive mutations, which are located into the NS5A-B cleavage site did not affect viral replication but enhanced the single-round infectious particles assembly only in trans-encapsidation model. In conclusion, our trans-encapsidation system enables the production of HCV single-round infectious particles. This system is adaptable and can positively select variants. The adapted variants promote trans-encapsidation and should constitute a valuable tool in the development of replicon-based HCV vaccines.
    Journal of General Virology 01/2013; · 3.13 Impact Factor

Full-text (2 Sources)

View
2 Downloads
Available from
May 28, 2014