Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp

Department of Psychology, Stanford University, Stanford, California 94305, USA.
Human Brain Mapping (Impact Factor: 5.97). 01/2011; 32(1):22-31. DOI: 10.1002/hbm.20997
Source: PubMed


The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use real-time fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC region of interest, an experimental group of eight women participated in four scans: (1) a pretraining scan in which they were asked to decrease activity in the sACC without neurofeedback; (2) two training scans in which sACC neurofeedback was presented along with instructions to decrease sACC activity; and (3) a neurofeedback-free post-training scan. An additional nine women in a yoked feedback control group saw sACC activity from the participants in the experimental group. Activity in the sACC was significantly reduced during neurofeedback training in the experimental group, but not in the control group. This training effect in the experimental group, however, did not generalize to the neurofeedback-free post-training scan. A psychophysiological interaction analysis showed decreased correlation in the experimental group relative to the sham control group between activity in the sACC and the posterior cingulate cortex during neurofeedback training relative to neurofeedback-free scans. The finding that individuals can down-modulate the sACC shows that a primary emotion center in which functional abnormality has been strongly implicated in affective disorders can be controlled with the aid of neurofeedback.

Download full-text


Available from: Ian H Gotlib, Oct 13, 2015
44 Reads
  • Source
    • "Providing pseudo-feedback for example, with the control group receiving feedback of the experimental group's neural activity rather than their own (e.g. Hamilton et al., 2011), or their own feedback from an unrelated brain region (Zotev et al., 2011), may be more appropriate than simply including a group that do not receive any feedback, as providing pseudo-feedback will generate an environment and elicit cognitions or emotions that more closely resemble those in the experimental condition. "
  • Source
    • "Recent developments in fMRI have enabled researchers to explore its potential for use as a treatment itself, rather than simply aiding treatment with psychological or pharmacological therapies. A number of recent studies have shown that when provided with real-time feedback of blood oxygen level – dependent signals while in the scanner, healthy participants are able to regulate the activity and connectivity of brain structures involved in emotion processing, many of which have been implicated in MDD.128–131 Building on this, it has been proposed that neurofeedback may be able to correct functional abnormalities seen in these networks in MDD132 by allowing patients to learn how to regulate activity, thereby correcting the impaired regulation present in the disorder. One recent small-scale pilot study of this therapy has shown promising results.133 "
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing number of studies have used neuroimaging to further our understanding of how brain structure and function are altered in major depression. More recently, these techniques have begun to show promise for the diagnosis and treatment of depression, both as aids to conventional methods and as methods in their own right. In this review, we describe recent neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. Overall, major depression is associated with numerous structural and functional differences in neural systems involved in emotion processing and mood regulation. Furthermore, several studies have shown that the structure and function of these systems is changed by pharmacological and psychological treatments of the condition and that these changes in candidate brain regions might predict clinical response. More recently, "machine learning" methods have used neuroimaging data to categorize individual patients according to their diagnostic status and predict treatment response. Despite being mostly limited to group-level comparisons at present, with the introduction of new methods and more naturalistic studies, neuroimaging has the potential to become part of the clinical armamentarium and may improve diagnostic accuracy and inform treatment choice at the patient level.
    Neuropsychiatric Disease and Treatment 08/2014; 10:1509-22. DOI:10.2147/NDT.S50156 · 1.74 Impact Factor
  • Source
    • "When older adults' cognitive control resources were limited, the positivity effect could not be observed in the older adults (Mather and Knight, 2005). Because the VMPFC/ACC is often associated with the regulation of both negative (Delgado et al., 2008; Kross et al., 2009) and positive (Beauregard et al., 2001; Hamilton et al., 2011) emotions, the current results suggest that adults' positivity effect may arise from age-related changes in controlled emotional processing or regulation implemented by the VMPFC/ACC. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal aging has been shown to modulate the neural underpinnings of autobiographical memory and emotion processing. Moreover, previous researches have suggested that aging produces a "positivity effect" in autobiographical memory. Although a few imaging studies have investigated the neural mechanism of the positivity effect, the neural substrates underlying the positivity effect in emotional autobiographical memory is unclear. To understand the age-related neural changes in emotional autobiographical memory that underlie the positivity effect, the present functional magnetic resonance imaging (fMRI) study used the independent component analysis (ICA) method to compare brain networks in younger and older adults as they retrieved positive and negative autobiographical events. Compared to their younger counterparts, older adults reported relatively higher positive feelings when retrieving emotional autobiographical events. Imaging data indicated an age-related reversal within the ventromedial prefrontal/anterior cingulate cortex (VMPFC/ACC) and the left amygdala of the brain networks that were engaged in the retrieval of autobiographical events with different valence. The retrieval of negative events compared to positive events induced stronger activity in the VMPFC/ACC and weaker activity in the amygdala for the older adults, whereas the younger adults showed a reversed pattern. Moreover, activity in the VMPFC/ACC within the task-related networks showed a negative correlation with the emotional valence intensity. These results may suggest that the positivity effect in older adults' autobiographical memories is potentially due to age-related changes in controlled emotional processing implemented by the VMPFC/ACC-amygdala circuit.
    Frontiers in Human Neuroscience 08/2014; 8:629. DOI:10.3389/fnhum.2014.00629 · 3.63 Impact Factor
Show more