T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.

Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Molecular Therapy (Impact Factor: 6.43). 12/2010; 19(3):620-6. DOI: 10.1038/mt.2010.272
Source: PubMed

ABSTRACT Autologous T lymphocytes genetically engineered to express a murine T cell receptor (TCR) against human carcinoembryonic antigen (CEA) were administered to three patients with metastatic colorectal cancer refractory to standard treatments. All patients experienced profound decreases in serum CEA levels (74-99%), and one patient had an objective regression of cancer metastatic to the lung and liver. However, a severe transient inflammatory colitis that represented a dose limiting toxicity was induced in all three patients. This report represents the first example of objective regression of metastatic colorectal cancer mediated by adoptive T cell transfer and illustrates the successful use of a TCR, raised in human leukocyte antigen (HLA) transgenic mice, against a human tumor associated antigen. It also emphasizes the destructive power of small numbers of highly avid T cells and the limitations of using CEA as a target for cancer immunotherapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT). Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII(+) glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376). Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 02/2015; 7(275):275ra22. DOI:10.1126/scitranslmed.aaa4963 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overcoming immunosuppression and activating a cytotoxic T cell response has the potential to halt the progression of cancer and, in some circumstances, eradicate it. Designing therapeutic interventions that achieve this goal has proven challenging, but now a greater understanding of the complexities of immune responses is beginning to produce some notable breakthroughs. ImmTACs (immune-mobilising monoclonal TCRs against cancer) are a new class of bispecific reagents, based on soluble monoclonal T cell receptors, which have been engineered to possess extremely high affinity for cognate tumour antigen. In this way, ImmTACs overcome the problem of low affinity tumour-specific T cells imposed by thymic selection and provide access to the large number of antigens presented as peptide-HLA complexes. Once bound to tumour cells the anti-CD3 effector end of the ImmTAC drives recruitment of polyclonal T cells to the tumour site, leading to a potent redirected T cell response and tumour cell destruction. Extensive in vitro testing coupled with promising early clinical data has provided an enhanced appreciation of ImmTAC function in vivo and indicates their potential therapeutic benefit in terms of a durable response and ultimately the breaking of T cell tolerance. This review introduces ImmTACs in the context of immunotherapy, and outlines their design, construction and mechanism of action, as well as examining target selection and aspects of preclinical safety testing. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Molecular Immunology 02/2015; DOI:10.1016/j.molimm.2015.01.024 · 3.00 Impact Factor


Available from
May 16, 2014