Accuracy and precision of a laser-spectroscopy approach to the analysis of δ²H and δ¹⁸O in human urine.

Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
Isotopes in Environmental and Health Studies (Impact Factor: 1.29). 12/2010; 46(4):476-83. DOI: 10.1080/10256016.2010.536229
Source: PubMed

ABSTRACT The isotope ratio analysis of body water often involves large sample numbers and lengthy sample processing. Here we demonstrate the ability of isotope ratio infrared spectroscopy (IRIS) to rapidly and accurately analyse the isotope ratios of water in urine. We analysed water extracted from human urine using traditional isotope ratio mass spectrometry (IRMS) and compared those values with IRIS-analysed extracted water and un-extracted urine. Regression analyses for δ²H and δ¹⁸O values between (1) extracted water analysed via IRMS and IRIS and (2) urine and extracted water analysed via IRIS were significant (R²=0.99). These results indicate that cryogenic distillation of urine was not required for an accurate estimate of the isotopic composition of urine when using IRIS.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stable isotopes of hydrogen (δ2H) and oxygen (δ18O) in human urine are measured during studies of total energy expenditure by the doubly labeled water method, measurement of total body water, and measurement of insulin resistance by glucose disposal among other applications. An ultrasensitive laser absorption spectrometer based on off-axis integrated cavity output spectroscopy was demonstrated for simple and inexpensive measurement of stable isotopes in natural isotopic abundance and isotopically enriched human urine. Preparation of urine for analysis was simple and rapid (approx. 25 samples per hour), requiring no decolorizing or distillation steps. Analysis schemes were demonstrated to address sample-to-sample memory while still allowing analysis of 45 natural or 30 enriched urine samples per day. The instrument was linear over a wide range of water isotopes (δ2H = -454 to +1702 ‰ and δ18O= -58.3 to +265 ‰). Measurements of human urine were precise to better than 0.65 ‰ 1σ for δ2H and 0.09 ‰ 1σ for δ18O for natural urines, 1.1 ‰ 1σ for δ2H and 0.13 ‰ 1σ for δ18O for low enriched urines, and 1.0 ‰ 1σ for δ2H and 0.08 ‰ 1σ for δ18O for high enriched urines. Furthermore, the accuracy of the isotope measurements of human urines was verified to better than ±0.81 ‰ in δ2H and ±0.13 ‰ in δ18O (average deviation) against three independent IRMS laboratories. The ability to immediately and inexpensively measure the stable isotopes of water in human urine is expected to increase the number and variety of experiments which can be undertaken.
    Analytical Chemistry 10/2012; · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel sampling device suitable for continuous, unattended field monitoring of rapid isotopic changes in environmental waters is described. The device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring-Down Spectrometry (CRDS). Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises spectral interferences associated with CRDS analyses of many aqueous samples. Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation (SD) = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by CRDS using an autosampler to inject and evaporate discrete water samples. The isotopic effects of variable air temperature, water vapour concentration, water pumping rate and dissolved organic content were found to be either negligible or correctable by analysis of water standards. The DS-CRDS system was used to analyse the O and H isotope composition in short-lived rain events. Other applications where finely time resolved water isotope data may be of benefit include recharge/discharge in groundwater/river systems and infiltration-related changes in cave drip water. Copyright © 2011 John Wiley & Sons, Ltd.
    Rapid Communications in Mass Spectrometry 12/2011; 25(24). · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stable isotope biogeochemistry is useful for quantifying the feeding ecology of modern and extinct primates. Over the past three decades, substantial advances have been made in our knowledge of the physiological causes of isotopic patterns as well as effective methodology to prepare samples for isotopic analysis. Despite these advances, the potential of stable isotope biogeochemistry has yet to be fully exploited by primate researchers, perhaps due to the prolific and somewhat daunting nature of the isotopic literature. I here aim to present a cogent overview of stable isotope applications to nonhuman primate feeding ecology. I review the factors that influence ecological patterns in carbon, nitrogen, and oxygen stable isotopes. I present methods for collecting and preparing samples of tooth enamel and bone mineral hydroxyapatite, bone collagen, fur and hair keratin, blood, feces, and urine for isotope analysis. I discuss both the existing and potential applications of these isotopic patterns to primate feeding ecology. Lastly, I point out some of the pitfalls to avoid when interpreting and comparing isotopic results.
    International Journal of Primatology 06/2012; 33(3). · 1.99 Impact Factor


Available from
May 23, 2014