Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals.

Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2011; 689:137-48. DOI: 10.1007/978-1-60761-950-5_8
Source: PubMed

ABSTRACT The styryl dye FM1-43 is a powerful tool to track exocytosis, endocytosis and recycling of secretory granules or vesicles. Due to its unique structure, dye molecules reversibly partition into the outer leaflet of surface membrane without permeating due to two cationic charges located in their headgroup. When a secretory cell is stimulated to evoke exocytosis, FM1-43 molecules that were inserted in the membrane are internalized during compensatory endocytosis and newly formed secretory granules or vesicles become stained with dye (staining/endocytosis). If stained secretory granules or vesicles undergo exocytosis in dye-free medium, due to concentration gradient, FM1-43 molecules dissociate from the membrane and loose fluorescence (destaining/exocytosis). Using a fluorescence microscope attached to a CCD camera or a confocal, it is possible to follow secretion in live cell or tissue preparations and in this chapter, we will make a description of FM1-43 staining and destaining protocol using the neuromuscular junction as experimental model. This technique has allowed answering important questions concerning synaptic vesicle recycling, which is a key step for neuronal communication. In addition, FM1-43 has proven to be an excellent tool for investigating membrane internalization and endosome recycling in a variety of cell types.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic.
    Hearing Research 10/2014; 316. DOI:10.1016/j.heares.2014.07.012 · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic cells can be reprogrammed to an altered lineage by overexpressing specific transcription factors. To avoid introducing exogenous genetic material into the genome of host cells, cell-penetrating peptides can be used to deliver transcription factors into cells for reprogramming. Position-dependent C-end rule (CendR) cell- and tissue-penetrating peptides provide an alternative to the conventional cell-penetrating peptides, such as polyarginine. In this study, we used a prototypic, already active CendR peptide, RPARPAR, to deliver the transcription factor SOX2 to retinal pigmented epithelial (RPE) cells. We demonstrated that RPE cells can be directly reprogrammed to a neuronal fate by introduction of SOX2. Resulting neuronal cells expressed neuronal marker mRNAs and proteins and downregulated expression of RPE markers. Cells produced extensive neurites and developed synaptic machinery capable of dye uptake after depolarization with potassium. The RPARPAR-mediated delivery of SOX2 alone was sufficient to allow cell lineage reprogramming of both fetal and stem cell-derived RPE cells to become functional neurons.
    STEM CELLS TRANSLATIONAL MEDICINE 10/2014; 3(12). DOI:10.5966/sctm.2014-0038 · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
    Journal of Visualized Experiments 03/2014; DOI:10.3791/50557