Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer.

Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
Oncology Reports (Impact Factor: 2.19). 02/2011; 25(2):513-8. DOI: 10.3892/or.2010.1085
Source: PubMed

ABSTRACT Aberrant promoter hypermethylation (methylation) is an epigenetic change that silences the expression of crucial genes, thus inactivating the apoptotic pathway in various cancers. Inactivation of the apoptotic pathway has been considered to be associated with chemoresistance. The objective of the present study was to clarify the effect of the methylation of the apoptosis-related genes, Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) and death-associated protein kinase (DAPK), on the response to chemotherapy in metastatic or recurrent gastric cancers. Tumor samples were obtained from 80 gastric cancer patients who were treated with fluoropyrimidine-based chemotherapy for distant metastatic or recurrent disease, after surgical resection of the primary tumor. The methylation status of the apoptosis-related genes, BNIP3 and DAPK, was investigated by methylation-specific PCR. Methylation in BNIP3 was detected in 31 tumors (39%) and in DAPK in 33 tumors (41%). There was no correlation between the methylation status of BNIP3 and that of DAPK. The response rate was significantly lower in patients with methylation of DAPK, than in those without (21 vs. 49% p=0.012). Progression-free survival time (PFS) was shorter in patients with methylation of DAPK than in those without (p=0.007). The overall survival time (OS) was shorter in patients with methylation of BNIP3 than in those without (p=0.031). The response rate was significantly lower in patients with methylation of either DAPK or BNIP3, or both, than in those without methylation (p=0.003). PFS and OS were significantly shorter in patients with methylation of either or both of these genes than in those without (p=0.002, p=0.001). The methylation of BNIP3 and DAPK can predict lower response to chemotherapy and poor prognosis in gastric cancer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Several new treatment options for gastric cancer have been introduced but the prognosis of patients diagnosed with gastric cancer is still poor. Disease prognosis could be improved for high-risk individuals by implementing earlier screenings. Because many patients are asymptomatic during the early stages of gastric cancer, the diagnosis is often delayed and patients present with unresectable locally advanced or metastatic disease. Cytotoxic treatment has been shown to prolong survival in general, but not all patients are responders. The application of targeted therapies and multimodal treatment has improved prognosis for those with advanced disease. However, these new therapeutic strategies do not uniformly benefit all patients. Predicting whether patients will respond to specific therapies would be of particular value and would allow for stratifying patients for personalized treatment strategies. Metabolic imaging by positron emission tomography was the first technique with the potential to predict the response of esophago-gastric cancer to neoadjuvant therapy. Exploring and validating tissue-based biomarkers are ongoing processes. In this review, we discuss the status of several targeted therapies for gastric cancer, as well as proteomic and metabolic methods for investigating biomarkers for therapy response prediction in gastric cancer.
    World journal of gastroenterology : WJG. 10/2014; 20(38):13648-13657.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer is considered one of the most deadly tumors worldwide. Even with the decline in its incidence, the mortality rate of this disease has remained high, mainly due to its late diagnosis and to the lack of precise prognostic markers. The main purpose of this review is to present genetic, epigenetic and proteomic molecular markers that may be used in a diagnostic and prognostic manner and to discuss the pros and cons of each type of marker for improving clinical practice. In this sense, we observed that the use of genetic markers, especially mutations and polymorphisms, should be carefully considered, as they are strongly affected by ethnicity. Proteomic-based markers show promise, but the higher costs of the associated techniques continue to make this approach expensive for routine use. Alternatively, epigenetic markers appear to be very promising, as they can be detected in bodily fluids as well as tissues. However, such markers must be used carefully because epigenetic changes may occur due to environmental factors and aging. Despite the advances in technology and its access, to date, there are few defined biomarkers of prognostic and diagnostic use for gastric tumors. Therefore, the use of a panel of several approaches (genetic, epigenetic and proteomic) should be considered the best alternative for clinical practice.
    World journal of gastroenterology : WJG. 09/2014; 20(33):11574-11585.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer (GC) is a major public health issue as the fourth most common cancer and the second leading cause of cancer-related death. Recent advances have improved our understanding of its molecular pathogenesis, as best exemplified by elucidating the fundamental role of several major signaling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these signaling pathways, such as gene mutations, copy number variants, aberrant gene methylation and histone modification, nucleosome positioning, and microRNAs. Some of these genetic/epigenetic alterations represent effective diagnostic and prognostic biomarkers and therapeutic targets for GC. This information has now opened unprecedented opportunities for better understanding of the molecular mechanisms of gastric carcinogenesis and the development of novel therapeutic strategies for this cancer. The pathogenetic mechanisms of GC are the focus of this review.
    World journal of gastroenterology : WJG. 10/2014; 20(38):13804-13819.