Guidance Receptor Degradation Is Required for Neuronal Connectivity in the Drosophila Nervous System

University of Cambridge, United Kingdom
PLoS Biology (Impact Factor: 11.77). 12/2010; 8(12):e1000553. DOI: 10.1371/journal.pbio.1000553
Source: PubMed

ABSTRACT Author Summary
Brain wiring is determined by genetic and environmental factors, nature and nurture. The Drosophila brain is a model for the genetic basis of brain wiring. The fly visual system in particular is thought to be “hard-wired,” i.e., encoded solely by a genetic program. Some key genes encode the guidance receptors that serve as “wiring” and synaptic connectivity signals. However, it is poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Indeed, many genes required for brain wiring do not encode the guidance receptors themselves, but rather encode parts of the cell biological machinery that governs their spatiotemporal signaling dynamics. For example, the vesicular ATPase is an intracellular sorting and acidification complex involved in regulating guidance receptor turnover and signaling. The protein V100 is a member of this v-ATPase complex, and in this study we show that mutations in the v100 gene cause brain wiring defects specifically in the adult brain. We further describe a V100-dependent intracellular “sort-and-degrade” mechanism that is required in neurons, and find that when this mechanism is perturbed, it leads to progressive build-up of and aberrant signaling by guidance receptors. These data suggest that a v100-dependent neuronal degradation mechanism provides a cell biological basis for guidance receptor turnover and spatiotemporally controlled dynamics during neural circuit formation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell navigation is the process whereby cells or cytoplasmic extensions are guided from one point to another in multicellular organisms or, in the case of unicellular eukaryotic organisms, in the environment. Recent work has demonstrated that membrane trafficking plays an important role in this process. Here, we review the role of soluble N-ethylmaleimide-sensitive fusion attachment protein (SNAP) receptors (SNAREs), which constitute the core machinery for membrane fusion and are essential for intracellular vesicular trafficking. We discuss the important functions of several vesicular- and target-SNAREs, in particular vesicular-associated membrane proteins 1, 2, 3, 4 and 7; vti1a/b; SNAP23 and SNAP25; and syntaxins 1, 3, 6 and 13. We conclude that endosomal SNAREs are important for cell navigation, a concept that opens avenues for fundamental research. There are also possible therapeutic applications because some of these SNAREs are the targets of clostridial neurotoxins.
    FEBS Journal 05/2011; 278(23):4497-505. DOI:10.1111/j.1742-4658.2011.08168.x · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons require highly specialized intracellular membrane trafficking, especially at synapses. Rab GTPases are considered master regulators of membrane trafficking in all cells, and only very few Rabs have known neuron-specific functions. Here, we present the first systematic characterization of neuronal expression, subcellular localization, and function of Rab GTPases in an organism with a brain. We report the surprising discovery that half of all Drosophila Rabs function specifically or predominantly in distinct subsets of neurons in the brain. Furthermore, functional profiling of the GTP/GDP-bound states reveals that these neuronal Rabs are almost exclusively active at synapses and the majority of these synaptic Rabs specifically mark synaptic recycling endosomal compartments. Our profiling strategy is based on Gal4 knockins in large genomic fragments that are additionally designed to generate mutants by ends-out homologous recombination. We generated 36 large genomic targeting vectors and transgenic rab-Gal4 fly strains for 25 rab genes. Proof-of-principle knockout of the synaptic rab27 reveals a sleep phenotype that matches its cell-specific expression. Our findings suggest that up to half of all Drosophila Rabs exert specialized synaptic functions. The tools presented here allow systematic functional studies of these Rabs and provide a method that is applicable to any large gene family in Drosophila.
    Current biology: CB 10/2011; 21(20):1704-15. DOI:10.1016/j.cub.2011.08.058 · 9.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SIGNIFICANCE: Lysosomes are organelles in which cellular degradation occurs in a controlled manner, separated from other cellular components. As several pathways terminate in the lysosome, lysosomal dysfunction has a profound impact on cell homeostasis, resulting in manifold pathological situations, including infectious diseases, neurodegeneration, and aging. RECENT ADVANCES: Lysosomal biology demonstrates that in addition to regulating the final steps of catabolic processes, lysosomes are essential up-stream modulators of autophagy and other essential lysosomal pathways. FUTURE DIRECTIONS AND CRITICAL ISSUES: Lysosomal membrane permeabilization offers therapeutic potential in the treatment of cancer, though the molecular regulators of this process remain obscure. This review focuses on recent discoveries in lysosomal function and dysfunction, primarily in in vivo situations.
    Antioxidants & Redox Signaling 11/2011; 17(5):766-74. DOI:10.1089/ars.2011.4405 · 7.67 Impact Factor
Show more

Preview (2 Sources)

Available from