Neighborhood effects on health: correcting bias from neighborhood effects on participation.

Inserm, U707, Research Unit in Epidemiology, Information Systems, and Modeling, Paris, France.
Epidemiology (Cambridge, Mass.) (Impact Factor: 6.18). 01/2011; 22(1):18-26. DOI: 10.1097/EDE.0b013e3181fd2961
Source: PubMed

ABSTRACT Studies of neighborhood effects on health that are based on cohort data are subject to bias induced by neighborhood-related selective study participation.
We used data from the RECORD Cohort Study (REsidential Environment and CORonary heart Disease) carried out in the Paris metropolitan area, France (n = 7233). We performed separate and joint modeling of neighborhood determinants of study participation and type-2 diabetes. We sought to identify selective participation related to neighborhood, and account for any biasing effect on the associations with diabetes.
After controlling for individual characteristics, study participation was higher for people residing close to the health centers and in neighborhoods with high income, high property values, high proportion of the population looking for work, and low built surface and low building height (contextual effects adjusted for each other). After individual-level adjustment, the prevalence of diabetes was elevated in neighborhoods with the lowest levels of educational attainment (prevalence odds ratio = 1.56 [95% credible interval = 1.06-2.31]). Neighborhood effects on participation did not bias the association between neighborhood education and diabetes. However, residual geographic variations in participation weakly biased the neighborhood education-diabetes association. Bias correction through the joint modeling of neighborhood determinants of participation and diabetes resulted in an 18% decrease in the log prevalence odds ratio for low versus high neighborhood education.
Researchers should develop a comprehensive, theory-based model of neighborhood determinants of participation in their study, investigate resulting biases for the environment-health associations, and check that unexplained geographic variations in participation do not bias these environment-health relationships.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prior epidemiological studies have mainly focused on local residential neighborhoods to assess environmental exposures. However, individual spatial behavior may modify residential neighborhood influences, with weaker health effects expected for mobile populations. By examining individual patterns of daily mobility and associated socio-demographic profiles and transportation modes, this article seeks to develop innovative methods to account for daily mobility in health studies. We used data from the RECORD Cohort Study collected in 2011-2012 in the Paris metropolitan area, France. A sample of 2062 individuals was investigated. Participants' perceived residential neighborhood boundaries and regular activity locations were geocoded using the VERITAS application. Twenty-four indicators were created to qualify individual space-time patterns, using spatial analysis methods and a geographic information system. Three domains of indicators were considered: lifestyle indicators, indicators related to the geometry of the activity space, and indicators related to the importance of the residential neighborhood in the overall activity space. Principal component analysis was used to identify main dimensions of spatial behavior. Multilevel linear regression was used to determine which individual characteristics were associated with each spatial behavior dimension. The factor analysis generated five dimensions of spatial behavior: importance of the residential neighborhood in the activity space, volume of activities, and size, eccentricity, and specialization of the activity space. Age, socioeconomic status, and location of the household in the region were the main predictors of daily mobility patterns. Activity spaces of small sizes centered on the residential neighborhood and implying a large volume of activities were associated with walking and/or biking as a transportation mode. Examination of patterns of spatial behavior by individual socio-demographic characteristics and in relation to transportation modes is useful to identify populations with specific mobility/accessibility needs and has implications for investigating transportation-related physical activity and assessing environmental exposures and their effects on health.
    Social Science [?] Medicine 07/2014; 119C:64-73. · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
    International Journal of Health Geographics 11/2014; 13(1):47. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations.Methods In 2012¿2013, 234 participants of the RECORD GPS Study (French Paris region, median age¿=¿58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate¿=¿57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models.ResultsParticipants spent a median of 1h58min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation.Conclusions Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation participation and public transportation use may have substantial impacts on the percentage of people achieving physical activity recommendations.
    International Journal of Behavioral Nutrition and Physical Activity 09/2014; 11(1):124. · 3.68 Impact Factor

Full-text (2 Sources)

Available from
Oct 10, 2014